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Introduction

This document provides a compilation of scientific knowl-

edge about the planet Mars. The most recent references

available have been collected, reviewed, and incorpo-

rated. Comprehensive descriptions are given of the

atmosphere of Mars, the surface of Mars, and the astrody-
namics of Mars.

The materi_s presented herein are not tied to any particu-
lar _ssion, but ra_er are intended to be a data base for

the development of engineering models which support

exploration missions to Mars. The document does not, for

example, make recommenda_ons as to what type of rock

distribu_on profile a rover ve_cle should be designed to
encounter. Rather, it presents a compilation of the latest

scientific thought conce_ng _e enviro_ent of Mars.

1.1 DOCUMENT REVISION AND CONTROL

New information about Mars may be forthco_ng in the

future from new analysis of previously collected data,

from new Earth-based observations, or from future flight
missions (American, Soviet, or others). As new informa-

tion becomes available, it will be incorporated into future
versions of this document.

This document was prepared by, and is under the control

of, the NASA Lyndon B. Johnson Space Center, Lunar and

Mars Exploration Office° It was developed to support the
Mars Rover and Sample Return Project Office.

Comments concerning this document should be directed

to NASA/Lyndon B. Johnson Space Center; Lunar and

Mars Exploration Office; Code IZ3; and marked "ATTN:

Mars Environment Model Cognizant Engineer."

1-1
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Mars Atmospheric Model .........................................................

2.1 INTRODUCTION

Model atmospheres are required for engineering design
studies of vehicles that operate within or through the at-
mosphere. Lifetime studies of vehicles on orbit, aerobrak-
ing studies of entry vehicles, design of parachute descent
systems, design of landers and automated vehicles on the
surface, and studies of ascent and rendezvous of vehicles

pressure at the surface changes by +15 percent due to
condensation and sublimation of the CO2; see figure 2-1.

Since upper atmosphere pressure and density are directly
related to changes in the surface pressure, accurate specifi-
cation of surface pressure is very important° Although (1)

through the atmosphere all require knowledge of the at- Mars atmospheric, pressure is approximately 1.0 percent
mospheric structure and dynamics. Atmospheric density is that of Earth, (2.) Mars is much colder than Earth, and (3)
of paramount importance in all regimes since the drag on a Mars has no liquid water, none_eless many of its meteoro-
vehicle is proportional to the density and the square of the logical features are sirrfiIar to terrestrial ones. Water-ice
velocity of the vehicle. Dust and cloud particles suspended clouds are present, and fronts with wdnd shifts and assod-
in the atmosphere can impact and damage high-speed ated temperature changes simiIar in nature to those on
vehicles and can reduce the effectiveness of solar power
generation systems. At lower vehicle speeds, atmospheric
winds become an important design criteria since they affect
factors such as surface operations, parachute descent, and
launch.

Because of the highly variable nature of the Mars atmos-
phere, several model atmospheres are presented here. These
model atmospheres are patterned after the 1962, 1966, and
1976 (COESA, 1962; COESA, 1966.; COESA, 1.972)models of

Earth can be found. The main differences betw_n Earth

and Mars atmospheres are that the Mars atmosphere does
not transfer as much heat, and it coo]s much faster by
radiation; Mars surface diurnal temperature cycle is Iarger
than Earth's (190 to 240 K during the summer, but stabilized
near 150 K (the CO 2 frost point) during the winter); and
Mars has local dust storms of at least a few hundred

kilometers in extent every year and, in some years, has
"great" dust storms which can span most of one or both
hemispheres.

the Earth's atmosphere. Mean, maximum, and minimum
models are presented as well as models which address the GlobaI dust stor_, which tend to occur near _fi}._el_on,

diurnal, seasonal, dust storm, _d lafi_dinaI variability of absorb _lar radiation Ngh in the atmosphere and thereby
the Mars atmosphere, both decrease the surface ma_mum temperature and in-

crease the upper atmospheric temperature. _is phenome-
The first models described here are enhancements of the non causes large scale expansion of the atmosphere a_.d
COSPARmodels(Seiff, 1982). These will serve as baselines, substantial increases of atmospheric density at orNtal and
representing the general range of variability expected for ent_ altitudes. Atso, the decrease in surface temp,_rature
daily-mean, su_er, and midlatitude conditions. _e causesthe surface atmospheric density to increase.
second set of models represents the actual entry conditions
as measured by Vikings 1 and 2, and provides a testing
mechanism for aerobraking systems against the expected
wave structure seen in the Viking entries between a_ut 30
km and 100 km. The third set of models represents the
diurnal, seasonal, latitudinal, and dust effects present in the
Mars atmosphere.

2.2 ATMOSPHERIC PROPERTIES

2.2.1 General 2

The Mars atmosphere is highly variable on a daily, seasona!
and annua| basis. The thinness of the atmosphere and solar
heating (which is 44 percent of terrestrial values)_aran-
tees a large daily temperature range at the surface under
clear conditions. On an annual basis, the atmospheric

Temperature gradients from equator torte and the cofio-
lis force tend to cause jet streams to form in n_dd_e latitude
regions. These jets are larger by a factor of four than the

tropospheric jets on Earth. However, the Mars .jet streams
occur at atmospheric densities two orders of magni;:_d;--
lower than for Earth, which lowers their importance fcc
vehicle design criteria.

Water ice clouds occur due to many different causes _t a_
on Earth. Nighttime radiaton cooling produces fogs; after-
noon heating causes updrafts which adiabafi;a1_y cools the
air and causes condensation; clouds form in associatior_

with ffontaI systems; flow over topography cayuses gray,At>-
wave clouds; and cooling in the winter _!ar r._,g.!o:_-_ca_:_:_:_?
clouds.

Most materials of part 2 are excerpted from the document ','ModelProffiesof the Mars Atmosphere for the Mars Roverm.d San-:p!eRe_-m_;:._!i:-
sion," by D,E. Pitts,J.E. T_an, J. Pollack,and R. Zurek, I9:88to be pub_hed by NASA as a tec_hnicaimemorand_n.

aSince there _e no oceans on Mars toaid m describing a mean geopotenfialreferencesurface, an oblate spheroid des_[b_ng the 6.1mbar _,vl :i;::
fl_eatmosphere from _e Mariner 9 measurements is used for this purpose (Cainet ed.,i973). This obIatespheroid h,_:s:_nequato_ia_:__cl: _....:
of 3393.4km and a polar radius (rp) of 3375.7km.
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2.2.2 Atmospheric Composition

Atmospheric composition on Mars was determined from
measurements with the mass spectrometers on the Viking
landers (Owen et al., 1977). Table 2-1 describes this compo-
sition in terms of the gases present and their mole fraction.

Water vapor abundance was continuously mapped from
the Viking orbiters for 1.5 Mars years (Jakosky and Farmer,
1982). Large amounts of water vapor (100 mm, i.e., 100

precipitable micrometers) have been observed over the
summer northern polar region, with essentially zero being
observed in the winter. There is a net transport from the
summer polar cap toward the winter polar cap. Water

vapor appears somewhat uniformly mixed with altitude
(Davies, 1979a) and the tenuous atmosphere may be near
water vapor saturation much of the time (Davies, 1979b).

Ozone amounts range from 57 mm over the polar hood
during winter to less than 3 mm during summer (Barth,
1974). (Both ozone and water vapor are likely to be not
uniformly mixed with the other atmospheric gases; for this
reason, ozone and water vapor are not included in table 2-
1.)

Gas

CO 2

N 2

Ar

O2

CO

Ne

Kr

Xe

Mole fraction

0.955 + 0.0065

0.027 + 0.003

0.016 + 0.003

0.0015 + 0.005

O.0007

2.5 ppm

0.3 ppm

0.08 ppm

TABLE 2-1.- Composition of the Atmosphere of Mars

2.3 REVISED COSPAR MODELS

The COSPAR warm-high and cool-low models described
by Seiff et al., 1982, provide envelopes around the excur-
sions of temperature and density measured by the Viking
probes during aerobraking and parachute descent. Al-
though they apply to the Northern Hemisphere summer,
the season of the Viking entries, they represent the best

¢-

O
°u

0.40
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"o

0.20

= 0
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10.0

9.0

E

8.0
0..
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w, • •1 ..... , l !
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\

\ J

\ \ \I \

ks= 210 t Kks= 300
\ \i \
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\ \

0 187 335 502 669

Sols (Normalized to local midnight) NSOS_999m
°

Figure 2-1.- Surface pressure versus time for Viking _nders I and 2 (Tillman, 1988).

The lower panel plots the daily average pressure at Ianders 1 and 2. _e difference in pressure between the landers is due to the

difference in altitude of the two sites. The upper panel iIIustrates the standard deviation around the daily average pressure, and

is an indicator of weather fronts, dust storms, and globaI oscillations.

2-2
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knowledge of the range of temperature and density from
near 100 km clown to the surface of Mars.

Because of the large amount of relief present on the surface
of Mars, the COSPAR models have been extended below
the mean aeroid to -5 kin, an altitude _low that which is

appropriate for Hellas (-4.3 kin), wNch is one of the lowest
regions on the planet, (Lindal et aI., 1979). Relafive to the

mean aeroid, Vi_ng Lander 1 (VL-1) (23 ° N, 48 ° W) sits at

-1.5 km and Viking Lander 2 (VL-2) (48 ° N, 226 ° W)sits at

-2.5 kin. (The local radius of the reference ellipsoid, selected

for the original COSPAR m_els (Ro= 3390 km), is also

adopted here for the revi_d C_PAR models. The accel-

eration due to _aviW as cMculated for latitude 30 ° by Seiff
et aI., 1978, is 372.95 cm/sec 2,and _s v_ue is also used for

the reused models.)

In order to ensure completeness for entry and orbital decay

studies, the COSPAR data are extended above 120 _ using

the program developed by Stewart, 1987, for orbital lifetime

and sustenance studies of the Mars Obse_er spac_aft.

Stewart's model s_cifies the atmosphere stmc_re above a

pressure of 1.24 nbar (1..24 x 10 -3d_es/cm2), usuMly near
120 kin, as a function of latitude, local solar time, and

longitude of the Sun with respect to the Mars vernal equi-
nox (Ls, called "areocentnc longitude"). The Ls is the

predo_nant cause of changes in the atmospheric density
above 100 km since it dete_ines the distance to the Sun

w_c h a ff_ts the _Iar fl uxreceived by Mars dra_ tica lly.

The Ls is also indicative of the seasons (wNch determine the
global pre_ure change due to sub|i_tion of car_n diox-

ide at the poles), and the onset of the global dust storms

wNch heat the up_r stratosphere. Latitude appears to

have only a small effect on a_osphenc densiW a_ve the

1.24 nbar level. OMy atomic oxygen is known to have a

diurnal effect, and _s is small compar_ to the seasonal

effects just discus_d.

The upper a_osphere is most sigmficanfly affected by the
ultraviolet radiation from _e Sun. The ul_a_oletin_la-

tion has a _eater effect on exospheric tem_rature and
density than does the surface pressure effect. A method for

estimating the ultraviolet solar insolation is to measure the

solar fluxat a wavelength of I0.7 cm. Hence, the 10.7 cm

flux is chosen as the parameter of interest in constructing

the up_r and lower envelops for the up_r regions of

the revised COSPAR atmospheres.

][n order to pro_de an envelo_ of up_r atmospheric
densities wNch are consistent with the establish_ CO-

SP_ profiles, extreme condition envelo_s are u_ with

Stewa_'s model. An L of 245° is u_ with the warm-high

C_PAR m_el gi_ng the ma_mum 10.7cm _lar flux for
the Mars orbit under nodal _Iar conditions. _s is

coupl_ __ +ls (standard deviation)conditions for both

long and short-term effects for exospheric temperature,

overall oxygen concentration, diurnal oxygen concentra-

tion, the altitude of the base of the thermosphere, and the

effect of dust in the stratosphere. An L of 65 ° is used with
the cool-low COSPAR model giving the minimum 10.7 cm

solar flux. This is coupled with -ls conditions in the

exosphere, as described previously, to create a lower bounds

of atmospheric density for the upper atmosphere. The

mean COSPAR model is extendedupward with Stewart's

baseline up_r atmosphere profile using me_ conditions

above the 1.24 nbar level. _ese upper a_osphere tem-

perature _d molecular weight profiles are added to the

C_PAR models to give: up,r, lower, and mean profiles

cNcuIated using the model of Pitts, 1969.

These revised COSPAR models (Mars Northern He_-

sphere mean, warm-Ng!a, and cool-low) are shown in fig-
ures 2_2, 2_3, 2-4, and 2-5.

Appendix C of Pitts et al., 1988, Iists the input data for the

various atmospheric models. SpecificaI!y, table C-I pro-

vides temwrature and molecular weight distribution as a
function of height for the reused C_PAR No,hem

Hemisphere Mean atmosphere; _b_e C-II Hsts; _hese input

data for the revised COSPAR Cool-Low atmosphere; and

table C-III gives the data for the revised COSPAR warm-

high atmosphere. Each table atso gives the following calcu-
lated quan_ ties (as a function o f h eight): pressure, density,

speed of _und, density scale height, number density, mean
free path, viscosity, pressure scale height, mean parficIe

velocity, collision frequency, and colurnnar mass. (Appen-

dix A of Pitts et al., 1988 provides a FORTR_-caIlable

routine which generates &ese calculated quantifies from

the input data.)

2.4 VI_G 1 AND VI_G 2 ENVY MODEL ATMOS-

PHE_S

Seiff and Kirk, 1977, describe the a_mospheric measure-

ments made during aerobraking and parachute desc:, _:o

Accelerometers onward the landers measured a_ospher'i

densiW from 120km down to 26km, A_osphefic pressure
was measured on the aeroshell from 90 km to 6 km, and

atmospheric tem_rature on the aerosheH was measured

from 27 km to 6 km. After jetfi_ning of the a eroshell and

deplo_ent of the parachute, pressure and tem_rature

were measured from 6 to 1.5 km and 3.8 to t.5 kin, respec--

tively. _e_ measurements have excelle_ t co_sis_ency arid

provide a description of the northern summer atmosplqere
of Mars at two latitudes and two locaI soiar times. '-fh_

Viking 1 entry occurred on July 20,1976 (L = 96°}, and the

Vi_ng 2 entry occurred on _pt. 3, t976 (L =!_ 7°) _,__e_:,n_%'
t _he NSSDC __ound track is descN_d in tab e 2-2 from _

Data Set 75-075C-02A and 75-083C-02Ao

National Space Science Data Center; NASA/Goddard Space _ght Center, Greenbelt, Maryiand.
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Figure 2-2.- Comparison of at-
mospheric density for the revised
COSPAR Northern Hemisphere
mean Mars m_el and the 1962

U.S. Standard Earth atmosphere.
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Figure 2-3.- Comparison of at-
mospheric temperature for the
revised COSPAR Northern Hemi-

sphere me_ Mars model (_than
extension above 100_ using Ste-
wart's model)and the 1962 U.S.
Standard Earth atmosphere.
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These en_ measurements present atmospheric stmc_ral

details that are averaged out in models describing average

conditions, such as the COSPAR models. Yet, some of these

details can be very important for vehicle design considera-

tions. Vi_ng temperature profiles (Seiff, 1982) show dra-

matic oscillatory structure, from approximately 30km to

120 km, which may cause concern in the design of auto-

mated guidance systems for aerobraking.

For altitudes above the Viking accelerometer measure-

ments, data from the neutral gas mass spectrometer (Nier

and McElroy, 1977) were used toge_er with Stewart's

upper atmosphere model. Viking 1 measurements of an

exospheric temperature of 185 K (Nier and McElroy, 1977)

were made at an L s of 96 ° , when the Solar and Te_estnal

Vi_ng I

Viking 2

Radar altitude

(km)

131.7

26.878

0.0

126.93

28.017

0.0

_titude

(deg)

16.1

21.0

22.4

41.22

45.99

47.9

Longitude

(deg)

-57.24

-49.87

48

-236.79

-229.81

-226.

TABLE 2-2.- Viking entry ground tracks

Data Service of the National Oceanic and Atmospheric
Administration estimated the 10.7 flux to be 28 x l ff 22W/

cm 2. Likewise, during the Viking 2 entry, the Viking

measurements gave an exosphenc temperature of 135 K at

an L of 117 ° , while the Earth-based network measured the
10.7 cm flux to be 32 x 10_22W / cm 2. These values for 10.7 cm

solar flux, L s, and exospheric tem_ratures were used as

inputs to Stewart's model for defining temperature and
molecular weight structure above the exobase (1.24 nbars)

Fibre 2-6 presents _rcentage atmospheric density devia-

tions of the Viking 1 entry conditions as compared with the

revised COSPAR Northern Hemisphere mean model; fig-

ure 2-7 presents the _me information for the Viking 2 entry
conditions.

Appendix C of Pitts et al+, 1988, lists the input data for the

various atmospheric models. Specifically, table C-W pro-

vides temperature and molecular weight distribution as a

function of height for the Viking I entry model atmosphere;

and table C-V gives the data for the Viking 2 entry model
atmosphere. Each table also gives the following calculated

quantities (asa function of height): pressure, density, speed

of sound, density scale height, number density, mean free

path, viscosiVy, pressure scale heighL mean par_cle veIoc-

iW, collision frequency, and columnar mass. (Appendix A

2-4
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Figure 2-4.- Percent atmosphere
density deviations of the revised
COSPAR low-cool model and the

revised COSPAR high-warm
modelascompared with the
revised COSPAR Northern

Hemisphere mean m_el.
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Figure 2-5.- Comparison of atmos-

pheretemperature structureofthe
COSPAR low-cool and COSPAR

high-warm models with extension
a_ve 100 km pmvid_ by Ste-
wa_'s model.

of Pffts et al., 1988, provides a FORT_-callable routine
-which generates these calculated quantifies from the input
data.)

2.5 ONE DIMENSIONAL, VERTICAL MODELS FOR
DUST _D SEASONAL E_CTS

The models described in the following section are included

pairs to represent medium dust conditions (t = 0.5 ). One
global dust storm model pair is presented: VL-1 for (t = 5.0).
In each case the seasonal surface pressure as measured by
the appropriate lander during the first year of data is used
in place of the 6.1 mbar at the mean aeroid. Surface pressure

• :. .......

changes during the day are not included. In each case,

Stewart's up_r atmosphere model is utilized above 120
kin. Information _tween _ km (the upper bound of the

in order to provide the user with a tool to evaluate _e Pollackmodels)andl2Okm(thelowerboundoftheStewart
importance of seasonal, latitudinal, time of day, and dust model.) is inter_Iat_.
storm effects on engineering design. These eight models
are the results of one-dimensional circulation computa-

tions by Dr. James B. Pollack (Theoretical Studies Branch,
NASA/Ames Research Center). They are based on lower
boundary conditions at the Viking I and 2 lander locations
and are calculated for the mean aeroid. Outputs are aver-

Tables in appendix C of Pitts et al., 1988, list the input data
for the various atmospheric models. For each model, a table
lists the temperature and molecular weight distribution as
a function of height. Each table also gives the following
calculated quantities (as a function of height): pressure,

aged over longitude and are provided from 0.0 to 80 km density, speed of sound, density scale height, number
geopotential altitude. The models are presented as four density, mean free path, viscosity, pressure scale height,
pairs, each pair having a mo_ng and afternoon model to mean particle velocity, collision frequency, and col t_m:q_
allow the user to assess diurnal environmental effects on mass. (Appendix A of Pitts et al., I988, provides a FOR-

engineering designs. Because the two landers experienced TRAN-caliable routine which generates these calculated
very similar conditions during Northern Hemisphere quantities from the input data.)
summer, only one model pair: Viking I summer, low opti-
cal depth (t = 0.25) is needed. However, during winter,
considerable differences were apparent between the lati-
tude of the VL-1 and VL-2, thereby requiring two model

2'5
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Figure 2-6.- Percent atmospheric

density deviations of the Vi_g 1

entry conditions as compared with
the revised COSPAR Northern

Hemisphere mean model.

Figure 2-7.-Percent atmospheric

density deviations of the Viking 2

entry conditions as compared with
the revised COSPAR Northern

Hemisphere mean model.
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2.5.1 Viking Lander 1, Summer, Low-Dust Models

The surface pressure of 7.794 + 0.1013 mbar which was

calculated for 83.08 ° < Ls < 96.69 ° is used for both morning

and afternoon models, (Johnson and Tillman, 1988). Ste-

wart's model was run using L = 90 °. Table C-VIII of Pitts et

al., 1988, gives information for the morning VL-1, summer,

low-dust model; table C-IX provides data for the afternoon

VL-1, summer, low-dust model.

For these models, figure 2-9 shows very high densities near

the surface (+120 percent of the COSPAR Northern Hen_-

sphere mean density) falling off to less than -70 percent of

the COSPAR Northern Hemisphere mean density above 70

km altitude. These atmospheres would provide considera-

bly different entry conditions than those experienced in the

northern summer entries of Viking I and 2.

2.5.3 Viking Lander 1, Winter, Medium-Dust Models

For these models, figure 2-8 shows little diurnal density

difference near the surface, increasing to about 80 percent

near 100 km.

2.5.2 Viking Lander 2, Winter, Medium-Dust Models

The surface pressure of 9.886 + 0.0907 mbar which was
O

calculated for 252.87 ° < L < 272.35 is used for both morning

The surface pressure of 8.884 + 0.0751 mbar which was

calculated for 253.85 ° < L < 273.32 ° is used for both morning

and afternoon models (Johnson and Tffiman, 1988}. Ste-

wart's model was run using L = 270 °. Table C-XII of Pitts

et al., 1988, gives information for the morning VL-1, winter,

medium-dust model; table C-XIII provides data for the

afternoon VL-1, winter, medium-dust model.

and afternoon models, (Johnson and Tillman, 1988). Ste- For these models, figure 2-10 shows greater density at the

wart's model was run using L = 270 °. Table C-X ofPitts et surface during the morning and evening than the summer

al., 1988, gives information for the morning VL-2, winter, models. Conditions during the morning for regions high in

medium-dust model; table C-XI provides data for the after- the atmosphere are similar to the mean model, while after-

noon VL-2, winter, medium-dust model, noon conditions are _eatly increased. _titudinal density

2-6
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Figure 2-8.- Morning and afternoon
density profiles calc_ated by Pollack
for VL.1 location d_ng the summer

for optical depth 0.25.

Figure 2-9.- Morning and afternoon

density profiles calc_ated by Pollack
for VL-2 location during the winter

for optical depth = 0.5.
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Figure 2-10.- Morning and afternoon

densityprofiles calculated by Pollack
for VL-1 location during the wintcr

for optical depth = 0.5.

gradients during the winter months may be appreciated by 2.5.4 Viking Lander 1, Winter, Dust Storm Models
comparing figures 2-9 and 2"10. In the 26 deg of latitude
between the Viking 2 and Viking 1, the densityat 50km has The surface pressure of 8.716 + 0.07 mbar which was calcu-
changed by 50 percent in the morning and 80 percent in the lated for 287,34°< L < 306.9 ° is used for both morning ar_
afternoon, afternoon models (Johnson and Tillman, 1988). Stewart's
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Figure 2-11.- Morning density

profile calculated by Pollack for
VL-1 location during winter for

optical depth = 5.0.
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Figure 2-12.- Afternoon density
profile calculated by Pollack for
VL-1 Iocation during the winter for
optical depth = 5.0.
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model was run using L = 297 °. This is coupled with +Is

(standard deviation) conditions for both long and short-
term effects for: the exospheric temperature, the overall

oxygen concentration, the diurnal oxygen concentration,

the altitude of the base of the thermosphere, and the effect

of dust in the stratosphere.

would be encountered in a Northern Hemisphere entry
with high inclination when a global dust storm was in the

rapid growth stage in the equatorial to northern midlati-

tude regions.

2.6 ATMOSPHERIC WAVE MODEL

Table C-VI of Pitts et al., 1988, gives information for the

morning VL,1, winter, dust storm model; table C-VII pro-
vides data for the afternoon VL-1, winter, dust storm

model.

Because of the large differences in density _om the mean

model, the plots for these models (figs. 2-11 and 2-12) are

drawn in log space. The morning conditions shown in

Waves in atmospheric density were measured during both
Viking 1 and Viking 2 entries between 40 and 100 km

altitude (Seiff and Kirk, 1977). Atmospheric temperature
derived from the density profile also displays an osciHa-_

tory nature w_ch appears to be a complex superposition

of wavelengths of varying phases. Zurek, 1988, has pro-
vided a model which will allow t_s wave structure to be

superimposed upon any of the atmospheres presented

fi_re 2-11 are _eater than themean near the surface and here. Inthat m_el, an amplitude and phase for both a
above 50 kin. The dust sto_ afternoon conditions in, diumaI and a semidiurnal component are prodded for

crease by an order-of-magmtude or more in the up_r dusty a_ospheres, and a diumaI component a!one is

atmosphere dueto efficient absowtion of mlar radiation given for "clear" a_ospheres. _e modeI provides ter_-

by the air_rne dust particles. Comparing figure 2-9 to 2- peratures as a _nction of altitude, la_de, and I_ai time.'

12 shows that extremely largehorizont_ density gradients see Pitts et al., 1988.
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L (deg) 0.1% 1.% 10.% 50.% 90.% 99.% 99.9% # Obs.

270-299 -13.3 -9.7 -4.5 0.7 7.4 13.3 15.6 2217

299-329 -12.0 -8.7 -4.0 0.8 9.3 16.3 19.5 2400
329-360 -17.4 -10.7 -6.2 43.3 10,0 16.9 20,0 1892
0-29 -15.4 -8.5 -4.8 -1.1 3.7 10.0 14.8 1461
29-59 -6.7 -5.0 -2.6 _.7 2.0 4.0 4.9 1615
59-89 -6.1 -4.9 -2.4 -0.7 1.5 2.5 3.1 289
89-119 _.2 -4.9 -3.0 -1.0 1.0 2.5 3.3 1240
119-149 -6.3 -5.2 -3.1 -0,9 2.1 4.1 5.1 2843
149-179 -7.2 -5.6 -3.0 -1.0 3.0 5.2 6.7 2484

179-209 -13,9 -9.7 -5.5 -1.2 3.5 8.4 11.0 2187
209-239 -12.7 -9.0 -4.8 _,1 7.7 14,6 18.4 2161
239-270 -10.6 -6.0 -1.8 1.6 7.8 14.7 16.5 23_

TABLE 2-3. - Zonal wind cumulative probabilities versus season (m/sec, + from west)

i

Ls (deg) 0.1% 1.% 10.% 50.% 90.% 99.% 99.9% # Obs.

270-299
299-329
329-360
0-29
29-59
59-89
89-119
119-149
149-179
I79-209
209-239
239-270

-15.1 -13.6 -7.7 -0.9 4.0 9.8 11.7 2217
-13.9 -11.9 -6.7 43.9 5.0 10.4 13..7 2400
-17.6 -14.7 -9.9 -1.4 6.6 12.0 15.0 1892
-12.7 -11.2 -5.9 _.3 3.3 6.9 9.0 1461

-4.6 -3.4 -1.9 _.3 3.1 5.0 5.9 1615
-2.7 -2.5 -1.6 4).3 2.9 4.0 4.6 289
-3.6 -3.0 -2.0 -0.4 3.1 4.5 5,0 1240
-5.8 -4.2 -2.4 _:7 2.9 5.1 6.3 2843
-7.:9 -5.5 -3,0 _.5 2.3 5.4 6.7 24_

....

-16.2 -12.2 -7.6 _:9 3.5 7.13 9.4 2187
-16.2 -12.5 -7.5 _.5 5.5 9.7 11.7 21.61
-10.8 -7.9 -4.2 0.5 5.1 9.8 14.1 2360

TABLE 24.-Meddional wind c_ulative probabilities versus season (m/sec, + from South)

2.7 WINDS 2.7.2 Wind Velocity Variation With Altitude

2.7.1 Surface Winds Hanel et al., 1972, used the Italian Research Interim Stage
(IRIS) instrument on Mariner 9 to make measurements of

Winds measured by the VL-2 for approximately 1000 sols the atmospheric thermal emission spectra (5 to 50 mm) in
were analyzed by Tillman, 1988b. Tables 2-3 and 2-4 order to derive vertical temperature profiles in the Mars
present information on zonal (east-west) and meridional atmosphere. Since the horizontal gradient of temperature
(north-south) wind cumulative probabilities, respectively, provides an estimate of the vertical wind shear (in an
The time periods were arbitrarily divided into 30 deg atmosphere obeying hydrostatic and geostrophic equilib-
increments in L where 299 ° > L > 270 ° is the period rium),collections of vertical temperature profiles along a
follovring the Northern Hemisphere Winter solstice (i.e., north-south line provide an estimate of wind structure in
analogous to January on the Earth); L=0 is the vernal a meridional plane, see fi_re 2-13 (Hanel, 1972). Two jet
equinox on Mars. (For example, as shown from the first axesare evident in this figure: one at 45 ° north with peak
row of table 2-3, during the time periodwhen 270°< _ < winds at 25 km (I20 m/sec from the west) and another jet
299 °, 2217 observations were made, 99.9 percent of the appears above 30 km at about 60° north (140 m/sec from
time, the winds were from the west at a velocity of less than the west). The vertical wind shear is directly proportional
15.6 m/sec; 50 percent of the time, mean winds were from to the acceleration due to gravity and horizontal tempera-
the west at a velocity less than 0.7 m/sec; and only 0.1 ture gradient and inversely proportional to the coriolis pa-
percent of the time were the winds from the east at a rameter. Since the mean solar day of Mars is nearly the
velocity greater than 13.3 m/sec.) same as Earth (one sol = 24 hours 39.35 min), the cofiolis
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Figure 2-13.- Temperature and wind structure of the wintertime Northern Hemisphere
(Hanel et al., I972).

Temperature of winte_e martian atmosphere, plotted in a meridional plane, has been

derived &om in&ared measurements made by M_ner 9. _e tem_ratures, _ven in de_ees
kelvin, can be used to infer the distribution of the _st-to-west component of the winds, _ven

.....

in meters per second. (Note that 100 m/s equals 224 mph.)

force is about the same. The acceleration due to gravity is

about 1/3 of that on Earth, thereby indicating that the

higher wind speeds on Mars are probably due to larger
north-south temperature gradients. The data collected

from Mariner 9 are such that soundings are not routinely
available along a meridian at the same time of day. Con-

sequently, figure 2-13 is the only information on vertical

wind structure available. For the purpose of engineering

design, the meridional winds (north-south) should proba-

bly be assumed to be a few meters per second or less,

although significant advection of water vapor is known to
occur in the north-south direction. These meridional wind

velocities are probably much less than the velocities esti-

mated in the east-west direction in Hanel's analysis.

Pollack et al., 1979, note that meridional movement of the

edge of the global dust cloud during rapid growth phase
can be tracked at 10 m/sec, but that dust-free meridional

winds should be about 1 m/sec. Strong atmospheric

thermal gradients around the periphery of the polar caps

dust causes greater atmospheric stability w_ch causes

winds driven by topograp_c heating and cooling to di-
minish (Pollack, 1979).

2.7.3 Dust Devils

Ninety-seven dust devils were detected on high resolution

stereo images made from the Viking orbiters (Thomas and

Gierasch, 1985). The size and shape of the shadow were
used to infer the altitude (< 7 km, mode = 2 km)and width

(<250 m). These were observed to occur within 20 ° latitude

of the subsolar point in the afternoon during summer.

Wind speed in these dust devils was not estimated.

2.8 CLOUDS

2.8.1 Composition and Properties

Due to the low pressure in the Mars atmosphere, water

clouds will occur as ice crystals, which will form as hexa-

and the sublimation of carbon dioxideare thought to cause gons. The size distribution of these Mars atmospheric ice

strong winds (Leovy, 1973) which may be the cause of tocal crystal clouds isn't known because proper wavelength and

dust stormsintheSouthem Hemisphere, (Peterfreund and scattering angle data were not acquired from the Viking

Keiffe, 1979). Topographic winds (upslope during theday, landers ororbiters. However, the low atmospheric dertsiW

downslope during night.) were measured with the Viking probably allows the larger particles to rapidly settle out of

Lander, (Hess et al., 1977). Increasing optical depth due to the atmosphere. Because of this, crude estimates of the

2-10
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upper lin_t for ice crystal sizes are 10 rnm, with a "best

guess" of about I mm (Pitts et al., 1988).

In the Earth's atmosphere, cirrus clouds often are com-

posed of either long hexagonal needles, hundreds of mi-

crometers in length, and tens of micrometers in diameter,
or plates hundreds of n_crometers wide, and tens of n_'

crometers thick, depending upon the temperature of for-

marion (Ono, 1969, 1970). Riming or dendritic buildup

often causes unusual additions to the crystals as they fall

through the atmosphere while maintaining an orientation

that maximizes their falling resistence. Large vertical
velocities around terrestrial thunderstorms in,ease the

time these hexagons can remain in the upper atmosphere.

In the absence of additional information, it may be as-

sumed that ice crystals of 1 _n can form in the Mars

atmosphere. In order for these clouds to be seen, optical

depths of a_ut 0.5 are required, thereby giving about 10-

s g/cm 3. Shadows of these cirrus clouds seen south of

Valles Marineris indicate altitudes up to 50 km with sizes

of 50 to 100 km (Spitzer,1980), It is possible that such high
altitude clouds are carbon dioxide, not water ice.

The mountains Olympus Mons and Arsia Mons extend

some 27 km above the mean aeroid (Fjeldb et al., 1977), and

are often seen in the Viking Orbiter photographs protrud-

ing thru extensive 19 km altitude cloud layers of water ice

crystals. Wave clouds (both bow-type and shock) have
been observed near mountains and craters on Mars (Briggs

and Leovy, 1974)o These waves occur near the top of

temperature inversions because of a perturbation by a
mountain or crater. High altitude cloud layers of conden-
sates and/or dust are observed in the 25 to 40 km altitude

range in images of the Mars limb. Cirrocumulus and
stratocumulus clouds are quite common in thenorth polar

hood region. Early morning water ice fogs occur probably

due to nighttime radia_onal cooling.

2.8.2 Frequency of Occurrence

Analysis of Vikdng lander wind data and Viking orbiter

imagery of afternoon convective clouds indicate convec-
tive bound_ layer w_ch is several kilometers deep

during the late afternoon in the summers (Tillman, 1977).

Mariner 9 cloud photos show_ e_dence of synoptic

patterns si_l_ to terres_ia| @ontal syste_ (Leo_ et al.,

1972). TiHman et al., 1972, analyz_ one such disturbance
in detaiI and found that it had the characteristics of a

barotinic instability (frontal system), and that s__al

analysis of daily average pressure indicated that si_Iar

systems appeared to pass over the lander each 3.3 soIs.

Ryan et al., 1978, found &at the winds and pressure

changes were consistent with eas_ard moving systems,
sim/lar to those found on Earth.

2.8.3 Dust in the Atmosphere

Sun diode data from each iander (TilIman et aL, 1979;

Zurek, 1982) provide an estimate of atmospheric optical

depth (z_)for each wavelength (k) that is sensed. Figure 2-

14 shows the optical depth data for the visible spectrum for

both Vi_ng landers for 2 Mars years°

Optical depth allows the attenuation of a signal Io to be

calculated as it traverses a plane parallel atmosphere at a

zenith angle e

I = io exp ( -_/cos e)

Studies of the optical depth versus wavelength, and the

appearance of the global dust storm scattering as it appears

when imaged from the Vildng orbiters at various phase

angles, allow estimates of the dust particle size and the

vertical distribution to be made° The following informa-

tion is provided by Zurek, 1988. Assuming a peak dust

:storm optical depth of 4, a scale height of 10 kin, and a

uniform mass n_xing ratio up to 40 km gives a nmss

density (m, i.e., columnar mass above I cm 2) of about 2 x

10 -3 g/cm 2 at the surface. The mass densiW (m) above an
altitude (Z) can then be described as:

m =mo exp (-Z/H)

where Z _s altitude (km) and H is the scale height (kin).

The following formula _s used to calculate the mass vol-

ume density (M) in g/cm _

M = 10 -s mo exp (-Z/H)/H

When dust storms are not present, opt_ca_ depths _n the

visible are _ypically about 0.5 (fig. 2-14), thus decreasing

mo by a factor of 8.

Local dust storms are expected to be lower in height (15-20
m 2,km),butmoredensebyafactorof2(i.e.,mo=4X 10-3g/c )

than the value which is appropriate for global dust storms.

Thomas and Gierasch, 1985, estimated the dust loading _n

dust devils to _ 3 x 10_ g/cm 3 (optical depth of .3 to .5), o__

about 10-_ g/cm 2.

The airborne particles in the Mars atmosphere a_e proba-

bly clay sil_cates, and would probably be ve_ similar to the
soil-derived aerosols (Kaolinite, _!lite, and Montmor_l_o-

nite) measured in the Ear[5's atmosphere, (Patterson and
G_ilette, I977a). Patterson and G_]Iette found that tSese

aerosols fit a log no_aI d_stnbut_on (see below) w_th a

surface mean radius (r_)of 1,5 mm and a geometric stan-
dard deviation (s) of 2.2.

dN/d(log r) = 0.424*No*eXp [-(log r - log G) _/2* Iog 2 v! !

[(2_) _/2 Iogo]

where N o is the number of particles per unit volume a__d r
is the radius of the particles. The d_stribut_ons for 5e_'_ i?_

2-i i
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Fi_e 2-14.- Optical depth as meas_ed for Viking landers 1 and 2 as a function of areocentric

longitude (L); Zurek (1982).

Normal-incidence optical depth z of the dust haze above VL-1 (top) and VL-2 (bottom) as a

function of areocentric longitude L (L = 90 ° and 270 ° corresponding to northern and southern

summer solstices, respectively) for the first Mars year of Viking observations. The xp values are
the a_ernoon values determined by Pollack et al., 1979, from imaging the Sun's disk with the

Viking lander imaging systems. The _T values are computed by Thorpe, 1981, from modeling the

scene reflectance and contrast modulation observed with the Viking Orbiter cameras using red

and clear filters. Small arrows mark periods when only lower bounds to the _p, _T values were

estimated. The L values for the observed onsets of great dust storms on Mars (identified by the

year in which they occurred) are also marked.
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aerosol loading were found to be the sum of two distribu-
tions- a background of small size aerosols and another
group of larger particles representing the newly injected
particles. Measurements carried out in the high plains of
West Texas by Gillette and Walker, 1977, have particles at
1.5 m elevation ranging from .5 to 100 mm, with densities
as high as 2.5 x 10-Tg/cmL

Pollack et al., 1979, modeled the Mars dust size distribution

with a modified Gamma function where rmis the modal
particle radius:

n(r) = C r_exp [ - (og_,)(r/r )y ]

and o¢- 2, _/= 1/2, r - 0.4 _m,
C = constant of proportionality.

summer solstice (L = 270°)_ (Figure 2-14 gives the L values
for the observed onset of great dust storms and also iden-
tifies the year in which each storm occurred.) Due to the
eccentricity of the martian orbit, the incident solar radia-
tion at perihelion is fully 45 percent stronger than at
aphelion. Since the martian atmosphere tends to be in
radiative equilibrium, this intense period of summertime
radiation along wRh features of variation in Mars sur-

face topography- apparently triggers the global dust
storms.

The opacity of the dust cloud in the visible wavelengths
may be quite high, reaching an optic_ dep@_ (_) of 5 (Hunt,
1979).

The above: distribution gives a mean radius of Z5 _.

Analysis by Pollack et al, of optical depth data from the
Viking landers and high resolution spectra from the I_S
experiment from Mariner 9 imply plate-like clay particles
such as Montmorillonite.

The great dust storms are tong-lived. Opticat depths (,_)
for the 197Ib and 1977a,b great dust storms were target
than 1 (at the visible wavelengths) for more than 100 sols
for each storm.

2.9.1 Dust Storm Evolution

Conrath, 1975, and Toon et al,, 1977, both indicate that

considerable vertical mixing (eddy diffusion coefficient
--107 cm2/sec) is required to maintain dust in the Mars
atmosphere as observed in the Mariner 9 data. Various
estimates of particles in the atmosphere range from 2 to I0

grn (Toon et al., 1977). Analysis by Toon et al., 1977, of IRIS
high resoIution,spectra suggested that the dust is a mix,re
of materials, igenous silicates with greater than 60 percent
SiO 2 or clay minerals. The size distribution of dust be-
tween 1 and t0 mm was similar to terrestrial airborne dust

removed from the parent location by considerable distance
(Toon et al., 1977).

2.9 GREAT DUST STO_S 4

A "great" dust storm is one that will span most of one or
both hemispheres of Mars. Table 2-5 provides a listing of
great dust storms which have been observed. This obser-
vational record shows _at one, or occasionally two dust
storms of planetary scale may occur each martian year. The
duration and extent of these storms vary greatly. Also, the
table shows that there have been many years in which no
great dust storms have been detected. Unfortunately,
neither Earth-based nor spacecraft observations have been
systematic enough to quantify the frequency of dust storm
occurrence or even the true extent of many individual
storms.

There is no reliable method for prediction of when a great
dust storm will occur. However, when they do arise, the

great dust storms occur during southern spring and sum-
mer. This seasonal timing appears to be related to the fact
that perihelion (Ls = 253 °) occurs iust prior to the southern

The maximum solar inflation for Mars occurs at the time
of the southern summer solstice. Around that time, the

subsolar point is _tween 8° and 25° south of the equator.
During relatively clear periods, the increased surface
heating witNn _is latitudinal zone will enhance atmos-
pheric convection during the day and wilI strengthen
winds induced by the thermal effects of topography.

The "classical" view for the evoIution of great dust storms
(summarized by Gierasch, 1974) is initiated with one or

more regional dust storms developing during southern
spring or summer. Three preferential locations fo_. these
regional dust storms are: (1) the sIopin g plains betweer_ the
northwest rim of Hellas and the Noachis uplands, where
both the t956 and 1971 great dust storms originated; (2) the
sloping plains to the west, south, and southeast of Claritas
Fossae, where the main centers of the 1973 and 1977a

storms developed; and (3) the low-lying Isidis Planitia to
the east of Syrfis Major; see table 2-5. These regions ar::'_
characterized by their Iocation in low and s btrop_ca;.
latitudes, by the presence of large east-facing sIopes, by
strong gradients in surface albedo or thermal inertia, and
perhaps by regional sources of the most easily moved
surface materials.

These Iocat dust clouds expand s!owly during an imtiai
phase lasting, t_icatIy, 4 days° Expansion becomes more
rapid during the next 4 days as new centers of activiw
develop and old ones coalesce. At first, expansion occ mis

largely in an east-west direction; after an additional

5toi0 days, the dust haze has encircled the pii'aa,e_o2v_;a_-_y
of the core r_ons established during the early pb;,_::es

4 The materials of section 2.9 are excerpted from "Martian Great Dust Storms: An Update," by Richard W° Zurek. icar-as, ,::.L _ 28& 3i :i), _??
and personal communications wihh Dr. Zurek.
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Year Citation L 4 Initial location

1909 (Aug) 2,3
191t (Nov) 2,3 u
19_ 1,2 192
1924a (Oct) 3
1924b (Dec) 1,2,3 237
1939s 2,3
1941s (Nov) 3
1943 1 310

1956 1,2,3 250
1958 1,3 310

1971a (July) 1 213
!971b (Sep) 1,3, Mariner 9 260
1973 1 300

1977a (Feb) Vi_ng 205
197_ qune) Viking 275
1979 Vi_ng 225?
1982 Viking m

u

m

Isidis Plannitia

Utopia?
South of Isidis
Isidis

Hellespontus
Isidis

Henes  tus
Helles_ntus
Solis Planum,

Hellespontus
_a_asia Fossae

1 Briggs et al., 1979.

2 Capen, 1971.
3 Michaux and Newburn, 1972. This reference also cites

several "major" dust storms identified only on Lowell
Observatory photographic plates and not referenced
elsewhere. These events (October, 1909; September, 1911;

1926; August, 1941) are not listed above.
4 Longitude of the Sun in Mars-centered (areocentric) coordi-

nates; seasonal date of the regional onset of the great dust
storms.

5 These clouds may have remained localized phenomena.

TABLE 2-5.- Martian great dust storms
(from Zurek (1982)).

remain active and distinguishable during the later stages

of the great storm.

Using a zonally symmetric circulation model, Haberle et

al., 1982, found that dust is raised up to 20 km or more

before significant northward transport occurs. During the

truly global 1971b storm, Mariner 9 television images of

the limb of Mars indicated that dust was mixed at up to 40-

60 km of altitude (Leovy et al., 1972).

Once the dust storm has obscured most of one hemisphere

and perhaps much of the other, the atmosphere begins to

clear. This decay process is generally attributed to the

increasing static stability above the regions where dust is
raised (Pollack et al., 1979; Leovy and Zurek, 1979). This

increased static stability should effectively suppress bound-

ary layer turbulence and/or decouple near-surface winds
from those aloft. Observations (Conrath etal., 1973; Lindal

et al., 1979; Martin and Kieffer, 1979) clearly show that the

martian atmosphere is certainly more isothermal and thus

stable during the decay phase. Even if local storms were

still active, the greatly enhanced stability would limit the

abiliW of such storms to convectively raise dust high into

the atmosphere where it could most easily spread. Opaci-

ties greater than one (_ > 1) will also suppress surface

2-14

heating (Pollack et al., 1979) and its associated diurnal

tempera_re variation and convection.
The time estimated for the decay phase of the 1971b storm

was 60 sols (Conrath, 1975); for the 1977a storm, the decay

phase was75 sols, and for the 1977b storm it was 51 sols
(Pollack et al., 1979),

2.9.2 Local Dust Storms

Local dust sto_s, w_ch may affect re_ons encompass-

ing up to 10_ km 2, have _en obse_ed on Mars during all

seasons (Gifford, t9_; Cain, 1974; Briggs and Leon,

1974; Peteffreund and _effer, i979), However, they have

been observed to occur most frequently in the approximate
latitude belts 10 ° to 20°N and 20 ° to 40° S, _th more clouds

seen in the south than in the north and with more frequent

sighfings during southern spring and summer (Michaux

and NeWbum, i972). _us, local stor_ are apparently

most likely to occur during the _me _fiods as the _eat
dust storms.

Winds exceeding 25 m/sec were observed (Ryan et al.,

1981) by the VL-I meteorological instruments 1.6 m above

the surface during the only local dust storm ob_rv_ atthe

lander sites (James and Evans, 1981). (Winds exceeding 25

m/sec were otherwi_ rarely seen at the lander sites.)

2.10 SOL_ I_ADIANCE AT _E MARS S_ACE

The solar irradiance incident on the surface of Mars is

compo_ of two components: the direct beam, and dif-
fuse component. The direct beam irradiance is affected by

scattering and absorption along the path. Measurement of

the optical depth of the atmosphere (Zurek, 1982) a]tows
an estimate of the absorption and scattering out of the

beam. The following equations will permit estimates of the

irradiance as a function of season, latitude, time of day, and

optical depth of the atmosphere.

The mean solar radiation at Mars (_) is 590 W/m2; at

perihelion (L = 249 °) the value is 718 W/m 2, and at

aphelion (L - 69 ° ) the value is 493 W/m 2.

Direct solar radiation, S, on the surface as affected by

simple single scattering of the atmosphere is:

S = (_ cos (9) exp ( -'c_/cos 9)

where:

cos (0) = sin (o) sin (_) + cos (o) cos (5) cos (h)

e = latitude,

8 (solar declination) =-24.8 ° at L = 270 'o (Northern Hcmi-

sphere winter),

(solar declination) = +24.8 ° at L = 90 ° (Northern Hem#-

sphere summer)

h - hour angle (0 at Zenith, + to west, _:ange 0 - 2_

[day = 24 hr, 39 mini

c_(watts/m 2) = 590 (1 + ecc, (cos (L -245°))2/(1 - ecc2) :_

ecc = 0.093377
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_ause of _e tendency for considerable forward scatter-

ing by small particles in the Mars atmosphere, and because

of the diffuse skylight, the estimate for total solar irradi-

ance at the surface will probably _ larger than the value

for direct sol_ radiance, S, by 10 percent or more.

2.10.1 Solar Ultraviolet Flux at the Mars Surface

_e solar flux incident at the surface is a function of _e

waveleng_ in question, the distance of _e planet from the

Sun, and the location in latitude, longitude, and _titude.
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Because of the tenuous nature of the Mars atmosphere, the

ultraviolet radiation which reaches the surface is much

greater than on Earth. However, some abso_tion by the

Mars atmosphere does occur. Below 2_ _, virtually no

solar radiation reaches the surface due to absorption by

carbon dioxide. Minor constituents such as water vapor,

molecular oxygen, and ozone _so absorb ultraviolet radia-

tion, but their contribution is small compared with carbon

dioxide. Fibre 2-15 shows a comparison of the radiation

incident on the top of the atmosphere with that radiation

calculated by Kuhn and Atreya, 1979, to _ present at the

martian surface(for northern spring and _nter at 50°N

lati_de).

_titudin_ distribution of daily solar radiation calculated

by Ku_ and Atreya, 1979, for three different wavelenffhs

is shown in fibre 2-16.

Figure 2-15.- A comparison of the radia-

tion incident on the martian atmosphere and

at the surface for 50 ° N spring and 50 ° N

winter. The uppermost curve for each season

corres_nds to the radiation incident on the

atmosphere (Kuhn and Atreya, 1979).
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Mars Surface Model -- : ...........

3.1 INTRODUCTION

Important problems that confront future surface and sci-

entific exploration of Mars are the physical and chemical

properties of the surface materials, the topographic char-

acteristics of various terrains, and the nature of the geo-

logic processes that formed the materials and shaped the

surfaces. The design of landing spacecraft and vehicles for

the exploration of Mars, the selection of suitable landing

sites and vehicle traverses, and the acquisition of samples

of materials for scientific analyses require a resolution of

these problems on a global scale and a good understanding

windtails on the lee sides of rocks (Binder et al., 1977). Drift

material is present in the lander sample field. Rocks of a

variety of sizes, shapes, and morphologies are imbedded

in or resting on the substrate; large rocks locaIly protrude

through the superposed drifts. Sizes of nearby rocks range
from a centimeter or so to several meters. Surfaces of the

substrate between the rocksare covered with a thin veneer

of fines or littered with small ram- to cm-size objects which

are chiefly clods. Rock fragments and thinly veneered,

littered surfaces occur in the sample field of the lander. The

of the surface of Mars at scale-lengths appropriate for material of the substrate between the rocks and beneath

landed spacecraft, vehicles, and sampling devices.

A description of the Viking landing sites is given below,

and the chemical and mechanical properties of the surface

materials at those sites are summarized. Comparisons of

the relations between the physical properties of Viking

landing sites' surface materials (e.g., dielectric constant

and thermal inertia) with physical properties of other
martian terrains (as inferred from radar observations of

the veneer of fines and littering clods is called blocky

material because of its behavior during sampling (Moore

et al,, 1977, 1979, 1982). Probable outcrops of rock are

present beyond the sample field (Mutch et al., 1976a;
Binder et al., 1977).

Panoramic views of Utopia Planitia obtained by Viking
Lander 2 (VL-2) reveal a rock-strewn surface and a mo-

notonous, flat horizon (Mutch et al., 1977, 1976c). Rocks

Mars from Earth and thermal observations of Mars from near the lander are generally larger and cover more area

Viking Orbiters) suggests that the surface materials at the than those at Lander 1 (Moore et al., 1979); they range in

landing sites are good analogs for the materials of most

places on Mars exclusive of the polar regions.

3.2 VIKING LANDING SITES

3.2.1 General Physical Description

Panoramic views of Chryse Planitia obtained by Viking

Lander I (VL-1)2 reveal large tracts of dune-like drifts that

are superposed on a rocky substrate and blocky rims of

near and distant large impact craters that rise above the

surroundings (Mutch et al., 1976a, b; Morris and Jones,

1980). A number of these impact craters are so near to the

landing site that debris and rock fragments ejected from
them must have reached the site (Moore et al., 1987).

Unlike the lunar surface, craters smaller than a few tens of

meters are conspicuously absent. On closer inspection,

most of the dune-like drifts have been deflated by the wind
and are seen to be cross-laminated, but there are two,

smooth dune formsabout 15 m from the lander that are not

deflated. The drifts are present as large complexes (-- 10 m),

individual drifts (1-3 m), isolated patches (< 1 m), and

size from a few centimeters to a meter and more in diame-

ter. The rocks, along with finer debris, may have been

derived locally by the dynamic deposition of ejecta from
the crater Mie 180 km to the east (Moore et al., 1987)o Drifts
are both scarce and small. Areas between the rocks are

commonly littered with centimeter-size and smaller clods.
Smooth surfaces of crusts, transected by fractures, and
mud crack-like mosaics of surface-materiad units tha _have

been exposed and scoured by the wind are also common.

The material between the rocks is called crusVy to clodciy

material because of its behavior during sampling (Moore
et al., 1977, 1979, 1982).

There may be local accumu]ations of bright red dust supe>

posed on the surfaces at both sites_ Very thin tayers
cohesionless dust from local dust storms are deposited o,: =

the surfaces and then whisked away by mild w_nds

(Arvidson et al., 1983). Local accumulations of this dust

that thicken to prod'ace unstable layers (=1 cm tMck) offer

an explanation for the formation of the miniature lar_d-
slides at the VL-1 site (Moore, 1986).

Most materials of part 3 are excerpted fro m the d __ent, "Viking L_ding Sites, Remote Sensi ng Obse_wations_ a_d Phys_c,_
Properties of Martian S_face Materi_s," by H,J, Moore and B.M. Jakosky. Prelimin_ draft, !988. (Mh_or editorial chang<::_
have been made for consistency of format with other parts of the present doc_ent°)

2Lander I was renamed the Mutch Memorial Station in honor of Dr. Thomas A. Mutch. However, Lander 1 o_° VL-! wiil be _._:cc:_

for simplicity.
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3.2.2 Chemical Properties of Surface Materials 3

The Viking landers were not designed or instrumented to

conduct a broad survey of the chemical properties of the
martian surface. Nonetheless, Viking returned several

very specific results that have been used to infer the nature
of the martian soil and its geochemical _story. The X-ray

Fluorescence experiment analyzed the elemental compo-

sition of the loose material at the Viking lander sites.

Unfortunately, from the exobiology perspective, the in-

strument could only detect elements with atomic number

greater than 12 (Baird et al., 1977); thus, there was no direct
measurement of the elements oxygen (O), nitrogen (N),

carbon (C), or hydrogen (H).

In addition to the lander cameras (which would show the

presence of any obvious macroscopic life-forms)and _e

gas chromatograph-mass spectrometer (GCMS) (which

searched for organics in the soil), the Viking landers
contained three experiments specifically designed to search

for indications of life on Mars: the Gas Exchange Experi-
ment (GEX) (Oyama and Berdahl, 1977), designed to

released by about 50 percent. There was a slow evolu-

tion of CO_ when nutrient was added to the soil.

3o The LR indicated the rapid release of CO 2 followed by

a prolonged, slow release of CO 2 from radioactively
labeled carbon in a nutrient solution. The effect was

completely removed by heating the solution to 160 °C

for 3 hrs, partially destroyed at40-60 °C, and relatively

stable for short periods at 18 °C but lost after long-

term storage at 18 °C.

The chemical activity and lack of organics has been inter-

preted.to be caused by one or more oxidants in the martian
soil (Klein, 1978). The standard mechanism t:o explain the

chemical reactivity of the Mars soil is the presence of

oxidants, such as H202 produced by an external energy

source interacting with atmospheric gases and/or the soil

(Hunten, 1979). In addition to peroxide (H202), alkali and

alkaline, Ear_ superoxides and ozonides could be pro-

duced by a variety of energetic processes. The nature of
these oxidants is not known. Based upon the GEX and LR

results, Klein (1978, 1979) has offered an analysis to sug-

determine if martian life could metabolize and exch_ge gest that there are three oxidants in the Mars soil:

gaseous products in the presence of water vapor and in a

nutrient solution; the Labeled Release Experiment (LR)

(Levin and Straat, 1977), which sought to detect life by the
release of radioactively ladled carbon (_4C) initially incor-

porated into organic compounds in a nutrient solution;

and the Pyrolytic Release Experiment (Horowitz and

Hobby, 1977), based on the assumption that martian life
would have the capability to incorporate radioactively

labeled carbon dioxidein the presence of sunlight (photo-

synthesis). The results of all three experiments showed

definite signs of chemical activity, but this was probably
nonbiological in origin (Horowitz, 1977; Klein, 1978, Mazur
et al., 1978).

The results of the Viking biology experiments have led to

the widespread belief that there are oxidants in the martian

soil. The three key results upon which this hypothesis is
based are:

1. The GCMS failed to detect organics in surface samples

and from samples below the surface (maximum depth

sampled was a_ut 10 cm) (Biemann et al., 1977;
Biemann, 1979). Since there are at least two mecha-

nisms that could produce organics on Mars, meteoritic
infall and ultraviolet irradiancG (Bie_nn et al., 1977),

the absence of organics suggests that a mechanism for

destro_ng them is present.

1. GEX oxidant: The GEX oxidant is a strong oxidant

that is relatively thermally stable and

capable of oxidizing water.

2. LR oxidant: A second strong oxidant must exist to

explain the LR results. This oxidant
differs from the GEX oxidant in that it

is thermally unstable.

3. Weak oxidant: A third, weak oxidant (gamma-Fe203)

is required to explain the slow _xida-

tion of the nutrient in the GEX experi-

ment and release of CO 2.

Possible oxidants for the GEX oxidant include K© 2 and

ZnO 2 (Ponnamperuma et al., 1977) and CaO 2(Ballou et al.,
1978). If each mole of oxidant released approximately one

mole of O 2, and assuming a soil densiVy of 1.5 g/cm -3,ther_

the density of oxidant would be about 2 to

25 ppm by mass corresponding to the release of 70 to 790

nanomoles of O 2.

A possible oxidant for the LR oxidant is H202, which has
_n catalyzed in the surface by the soil minerat .... _e

concentration of H202 r_uird _o explain the LR results is

a_:ut 5 ppm by mass.

2. The soil released 02 upon humidification in the GEX Alternative explanations for the results of the Viking b_ol -

(Oya_ and _rdahl, 1977, 1979) in amounts ranging o_ ex_riments include: (1) in_insicalIy reactive clays
from 70 to 790 nanomo|es _r cm 3. Hea_ng of the (Baninand _shpon, 1979; Banina_d Mar_!ies, 19831_ or

sample to 145 °C for 3.5 hrs reduced the amount of 02 the production of radicaIs such as OH - due to a che_.cai

3 The materiaIs of section 3.2.2 were prepared by Dr. Christopher P. McKay of the NASA Ames Reaserch Center, 1988.
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First color photograph of Utopia Planitia taken by Viking Lander 2;

camera is facing northeast. (The spacecraft is tilted about 8 °
to the west, thereby causing the horizon to appear tilted.)
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weathering process in the soil (Huguenin et all., 1979)
wi_out any ultraviolet excitation; and (2) release of physi-
cally absorbed gases in the martian soil with no che_cal
reactions necessary (Fanale et al., 1982). It has been sug-
gested that the 02 released in the GEX could be due to
physically trapped 0 2wit_n micropores (Nussinov et al.,
1978).

There are also suggestions of oxides produced in the soil by

the direct action of ultra_olet light (Chun et al., 1978; Oro
and Holzer, 1979), Hunten, 1979,1987, has suggested that

H20 2is produced in the atmosphere due to photochemical
reactions at a rate of about 2 X 109.equivalent "c_" mole-

_"2

cules cm -2 s -1 and that this could be the source of the

oxidants suggested by Klein, 1979. Another consideration
is of the kinetics in the release and readsorbfion of the CO 2
within the LR; it has been suggested that hhe wetted soil

would absorb theCO 2formed unless the resulting solution
was acidic (Ponnamperuma et al., 1977). Plumb et al.,
(work in progress) have suggested that the oxident is a
peroxonitrite, which they claim can be produced by the
action of ultraviolet radiation (at 253.7 n. mi.) on nitrates in
the martian soil.

3.2.3 Physical Properties of Surface Materials

No Viking  peciac Iy desired
or _lott_, nor were engineenng and scientific measure-
ments specifically designed for the task of dete_mng the
physical properties of the martian surface mate_als (Moore
et aL, 1987). For t_s reason, information on the physical

properties isglean_ froma vane_ of sources, such as the
interaction of _e I_ders and surface materials during

landing, surface sampler activities and esti_tes of forces
from motor-current records, and the resul_ from other

_entific investigations (Moore et al., I98_. _us, some of
the physical properties can o_y be _dely esti_ted.

_ere _e four gener_ classes of _terials in the sample
fields; in order of increasing overall stren_, they are: (1)
drift (VL-1), (2) cms_ to cloddy (VL-2), (3) bl_ky (VL-1),
and (4)r_k (VL-1 and 2)(Moore et al., 1982). Relevant _st

estimates of the physical profiles of the_ materials are
given in table 3-1 and discussed below.

Grain i Bulk

size density

(_? - (k_m3)

Cohesion

(kPa)

Angle of
internal
friction

(degrees)

.... .......................... Lander 1

Fraction
of area

covered

Therma! -Die!eeOc
inertia cons_t

10 -3 cgs
units)

2.35
2.11 - 2.62

3_27
2.43 - 4.50 !

8

3_33
!i 2.61-4.32

3.3±0.7

3.0
" 4.0-4.6

Ddff m ateria_

Rocks

Sample field

_Remote sensing

0.1- 10,0 1-1150±150

0.1-1500 _,1600±400

35x 10%
240 x 10

1624
1298 -1850

1612
1292 - 1857

1486
1857 - 2026

L

1.6 ± 1.2 18.0 ± 2.4
0-3.7

5.5±2.7 !_ 30.8±2.4
2.2 t0.6

1000 - 40- 60
10 o(x)

Lander 2

0.14

0.78

o.o8

Crusty to cloddy
material =

Rocks

Sample field

Remote sensing

0.I - 10.0

35 x 10 3
450x 103

1400±200

260O

1568
1396- 1740

34.5 ± 4.7 0.86

40-_ 0.14

- o.:___,o._o_

1 Thermal iner_Jais 8.2 ± 1.4 if fraction of area covere_ by ro_ is taken _ 0,15 ± 0:5 (_e text)
2

Thermal inertia is 5.6 ± 1.4 if fraction of area covered byr_ is taken as 0.20 (_e text)

g.3 +0.51

4O

g.o ± 0.5

6.3 ± 1.5

4O

8.0± 1.5
8.3- 8.8

2.81
2.43- 3.27

3.1g
2.81 -3.64

2.8 - 12.5

N803200m

TABLE 3-1.- Estimates Mechanical Properties and Remote Sensing Signatures of the Surface Materials in the Sample Fields at the

Viking Landing Sites.
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3.2.3.1 Drift Material

Drift material, which occupies about 14 percent of the

sample field of VL-1, has the characteristics of very fine-

grained, porous materials with low cohesions; see figure 3-

l(a). It has a consistency somewhat like baking flour.

Sample trenches in drift material are typically 0.04 to 0.06

m deep and characterized by (1) steep walls atong much of

their lengths and at their tips, which have small, slumped

units, (2) tumpy-ap, pearing railings and floors, (3) large

amounts of tailings, (4) highly reflective surfaces on the

floors and tailings where the sampler has tamped, rubbed,

and compressed the material, and (5) smooth, domed
surfaces around their tips.

Individual mineral or mineraloid grains in drift material

are very small. Analyses of N 2 gas desorbed from a
humidified sample in the biology GEX indicate that the

specific area of drift material is 17 m 2/g (BaIlou et al., 1978).

This specific area implies that the sizes of individual min-

eral grains are about 0.14 mm, but geometrical sizes of the

grains may be 10 to 100 times larger than those inferred
from surface areas (Fanale et al., 1971). Quartz crushed to

pass a 10 mm sieve and some natural clays have specific
areas near 17 m2/g (Brown et aI., 1960; Mooney e t al., 1952)o

A very fine grain size is also implied by the lack of erosion

of drift material by engine exhausts during landing (Hut-

ton et al., 1980; Moore et al., 1987). For erosion depths less

than about 0.7 cm (Hutton et al., 1980), theory indicates

particle sizes less than about 10 mm (Romine et al., 1973).

Additionally, the smooth, highly reflective surfaces in

trenches and railings produced by the _mpler indicate

that the grains of drift material are very fine (Moore eta].,

1977). Thus, the physical grain sizes of drift material may

be estimated to be 0.1 to 10 mm. The lumps or veryr weak

clods of disturbed drift material are aggregates of these

very fine grains.

L_rge porosities, or Iow bulk densities, for undisturbed

drift mateNat are implied by the low bulk densities of the

disturbedmaterial estimated with the x-ray fluorescence

spectrometer (XRFS), the reaction of the material to foot°

(b) VL-2 sampler inserted in crusty
material (near center). Note dis-

rupted and tilted tabular units of
crust to left of sampler. Rocks sur-

round sampIer on all sides; smal]
rock to left of sampler is about 0.08

m wide. Dark band ae right is sam-
pler boom. Sun is ae Ieh (Frame
21H031/595). V

A (a) VL-1 sampler inserted in drift

material (near center). Note lumpy
objects of drift materiat next to sam-
pier and smooth, but deformed sur-
face beyond. RoCk 3 (Sponge), at
upper left, is about 0.23 m wide.
Magnet cleaning brush is at lower
!eft. Sun is at upper left (Frame
11H187/6i2).

A (c) Trenches excavated in blocky material. Note
blocky units of clods a_ tips of trenches. Far trench is

0.09 m wide; Iarges_ cIods are 0,04 m across. Sun is at
upper right (Frame 12B188/093).

•!i<_?_i_i!_iiiiiii¸ i̧<_7i;; ;i:<i<iiiiiii!¸;iii!iiiiiiiiii_'_ii_iii_iiiiii!_iiii<_ii_iii;< • _ <<i_i<5¸¸_i<_

Figure 3-1.- Photographs illustrating surface materials at the Viking landing sites.
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of internal friction estimated from surface deformations in

front of the sampler during trenching. For the disturbed

state, the bulk density of drift material in the XRF-X3analysis
chamber is near 1100 + 150 kg/m 3 (Clark et al., 1977). For

the undisturbed state, an interpretation of full- and 3/s-

scale dynamic footpad penetration tests indicate that the

strength properties of drift material are consistent with a
lunar nominal test material that has a bulk density near

1300 kg/m 3 (Moore et al., 1977), but other materials may
have similar strength properties at smaller bulk densities

(Moore et at., 1987). The large penetration of, deformation

around, and file infiUing of the deeply buried footpad 2 are

consistent with a porous, low-density, soilqike material

that has a small angle of internal friction. Sirrdlarly, _e

small angles of internal friction (18.0 + 2.4 °) deduced from

analyses of the sample trenches and surface bearing tests
(Moore et al., 1987, 1982) are consistent with a low bulk

density. As a best estimate, the bulk density of undis-
turbed drift material may be taken as 1150 + 150 kg/m 3.

Porosities for these bulk densities range between about

0.50 and 0.62 if the density of the individual mineral grains

is 2600 kg/m 3.

Drift material possesses cohesion which may be, in part,
due to cementation. The average cohesion of drift material

is near 1.6 + 1.2 kPa; the cohesions range between 0 and 3.7
kPa (Moore et al., 1987, 1982). The variations of cohesions

may be related to planes of weakness between cross-
laminations or fractures.

3.2.3.2 Crusty to Cloddy Material

Crusty to cloddy material, which occupies about 86 per-

cent of the sample field of VL-2, has the characteristics of

moderately dense soils; see figure 3-1(b). Sample trenches

in crusty to cloddy material are typically 0.04 -0.05 m deep

and are characterized by (1) steep and irregular slopes at

their tips and moderate slopes elsewhere, (2) generally

fine-grained tailingsinterspersed with moderate size (0.02

m) equidimensional clods and slabs of crust, (3) modest
amounts of tailings, (4) large (-0.04 m) clods and slabs of

crust that have fallen into the trenches, and (5) disrupted

areas around their tips. In contrast with the smooth,

domed surfaces at the tips of trenches in drift material, the

disrupted areas at the tips of trenches in crusty to cloddy

material are composed of mixed fines and broken slabs of
crust that have been displaced upward or regular polygo-

nal prisms that have separated along fractures and been

displaced upward. The polygonal prismatic forms of
broken crusts and clods in the tailings are quite different

from the irregular-shaped weak lumps in the taitings of
trenches in drift material.

Individual _neral or mineraloid _ains in _e crusts _d

clods, like those in drift material, are very fine. _e

amounts of gases d_rbed Dora hu_dified samples of

crusty to cloddy material in the biology GEX are only

slightly smaller than those of drift material, but this could
be due to larger amounts of adsorbed water (Oyama and

Berdah], 1977). Thus, the sizes of the grains are near 0.1 to

10 mm. It is possible that n_Himeter-sized clod lets or

aggregates of these very fine rrdneral-rnineraloid grains

are abundant in crusty to cloddy material because moder-
ate increases in commJnutor motor currents were ob-

served while crushing the material (Moore et al., 1987).

The presence of small, porous fragments or dodlets are

also required to account for the rather low bu]k densities

estimated with the XRFS (Clark, B. C.; Weldon, Ray; and

Castro, A. ]., person, comm., 1978)o The relatively large

amount of erosion by the engine exhaust gases during

landing is related to the presence of frac_red crests,

prismatic clods, and cl_lets which produce a larger "ef-

fective grain size" than that of drift material. During
endeavors to collect samples of "rock" fragments between

0.2 and 1.25 cm in diameter, no samp!es were delivered for

analyses in the XRF_ chamber. 7_us, strong pieces of

crusts, doris, or rock fragments in this size range that are

capable of surviving the sieving procedures used to collect
the coarse fraction are not present in crusty to cloddy

material. The crusts and clods could be disaggregated

with finger pressure.

The average angle of internal friction of crusty to cloddy
material is 34.5 ° + 4.7 ° and is consistent with a soiMike

material that has an undisturbed bulk density near 1400 ±

200 kg/m 3. This estimate of bulk density is taken as the

best estimate for crus_ to cloddy material (but it should be
realized that dielectric constants (discussed later) were

conMdered in making this estimate (Moore et al., 1987,
1982)).

Layers of crust in crus_ to cloddy materiaI dearIy suggest
that cementation of the very fine grains is partly respon-

sible for the cohesion. The average cohesion of c_:_sty to

cloddy material is 1.1 + 1.2 kPa; cohesions range &ore0- 3°2

kPa (Moore et al., 1987, 1982). Ahhough the average

cohesions of crusty to cloddy and drift materials from the

analyses of a number of trenches are about the same_ the
contrasts between the tabular crusts and prismatic clods of

disrupted crusty to cloddy materia] and the weak _umps of

disrupted drift materials suggest that the cohesions of

crusty to cloddy materials are typically Iarger than those c_i::

drift material -- especially near the surface.

3.2.3.3 Blocky Material

Blocky material, which occupies 78 percent of the sample

field of VL-1, has the largest overaiI sVren_h of the three
soil-like materials at the sites; see figure 3-1(c)o Sample

trenches in blocky mater-ia] are t_ica]Iy 0.03 -0°04 m deep

and characterized by (1)m_erateIy to st_piy sloping
walls at _eir tips but moderately Moping e_sewhere, (2)

tailings and floors that appear rubbly _cause they are

littered with distinct fragments and _._o_s,"'_-_ (3) wa]is at _heir

tips that generally appear blocky, and (4) surfaces ar_, m,.d

their tips that are displaced upward and app=m:{_blocky i_

places.
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The grain size of blocky material is unknown because the

material was never analyzed by the GEX (Oyama aud
Berdahl, 1977; Moore et al., 1987). The similarities in the

chemical composition ofblocky, drift, and crusty to cloddy

materials and the fact that some surfaces that were tamped

and rubbed by the sampler are smooth and reflective argue

for a very fine grain size. On the other hand, the very large

increases in comminutor motor currents while crushing

blocky material are consistent with abundant millimeter-

size fragments of materials like silicates, heavy metal ox-

ides, or indurated shales. It is de_ that strong, cohesive

clods and fragments are present in blocky materials be-

cause samples of the coarse fraction were delivered for

ana|yses in the XR_ chamber and large fragments of

blocky material clogged the XR_ sample delivery port by
the end of the extended _ssion. Most of the clods and

fragments that clogged the ddivery port were reddish in
color like the VL-1 soiMike materials, but others are darkIy

colored like the rocks (Dale-Bannister et al., 1988).

Bulk densities of the clods and fragments of blocky mate-

rial could be quite large. Samples of the coarse fraction in
the XRFS chamber had estimated bulk densities of 570 to

940 kg/m a (Clark, B. C.; Wddon, Ray; and Castro, A. J.;

person, comm., 1978). On Earth, tests indicate that coarse

objects in the XRFS analysis chamber occupy about 50
percent of the voiume of the chamber, but experience with

drift material suggests that 62 percent is possible on Mars.

For the first porosity, bulk densities of the coarse obits or
clods would range between 1140 and 1940 kg/m 3and, for

the second, they would range between 1500 and 2474 kg/

mL The penetration of footpad 2 into bl_ky mate_al

during landing is consistent with a lunar nominal material
that has a bulk density near 2300 kg/m 3 (Moore et al.,

1977). Thus, a large bulk density appears probable for

blocky material in the undisturbed state and 16_ _+400 kg/

m 3 is taken as a best estimate. However, the angle of
internal frictionis about 30..8 °_+ 2.4 ° and somewhat smaller

than would be expected for a soiMike material with a bulk

density of 1600 kg/mL

The cohesion of blocky material is probably related to

cementation by some sulfur and chlorine compounds

because chemical analyses of the coarse fraction show an
enrichment of these elements (Clark et al., 1982). The

cohesion of blocky material is the largest of the three soil-

like materials and averages 5.5 + 2.7 kPa with a range
between 2.2 and 10.6 kPa.

An appreciation for the relative strengths of drift and

blocky materials can be gained by inspection of figure 3-2.

3.2.3.4 Rocks

Rocks with diameters of 0.035 to 0.23 m occupy 8 percent

of the sample field of VL-1, and rocks with diameters of

0.035 to 0.45 m occupy 14 percent of the sample field of VL-
2. Little is known about the rocks. Some of the rocks
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appear to be dense and fine-grained, others appear to be
vesicular, and others may be breccias (Sharp and Malin,

1984; Garvin et ai., 1981). The Viking surface sampler did

not chip, scratch, or spall the surfaces wNch were exposed
to the atmosphere of those rocks that it pushed or scraped,

so it is apparent that they do not have weak, punky rinds
(Moore et al., 1987, 1977). Rock surfaces are gray in color

where not covered by a few micrometers of dust (Adams

et al., 1986), Because demonstrable rock fragments were

never analyzed with the XR_, rock compositions are

unknown. Most scientists believe that they are mafic rocks
(Guinness et al., t.987) such as basalts, basaltic andesites, or

andesites (Adams et aI., 1986). Becau_ so little is known

about the rocks, a bulk density of 2600 kg/m _ can be

assigned to the rocks and rock fragments by anatogy with
common dense terrestrial rocks, but there could be some

variations due to variations in porosity. Cohesions are

probably onthe order of 10a,10akPa and angles of internal

friction in the range of 40-60 °, also by analo_ with com-
mon terrestria! rocks°

The size-frequency distributions of the rock fragm_ents and

blocks in the ._mple fields are understood and small rock
fragmentsare conspicuously absent. Despite some 65

attempts to collect and ddiver the coarse fraction (0.2 _1.25

cm) for analyses inthe _ chambers (Moore et al., 1987),
no sampte was ever received by VL'2 and the coarse

fractions anaIyzed by VLq had chem_caI compositions
that were remarkaNy simitar to those of drift and crusty to

cloddy materiaIs (Clark et a1., 1982). Apparently, the dark

fragments on the XRPXSde!ivery port either were similar in

composition to the soil-like materials, were not abundant
enough to be detected, were previously unsampted, or

were masked by fines in the analysis chamber. Th_7."°ewas
no evidence for a coarse fraction in drift material oth_:::: _.,_nan

weak lumps. ]Ifsignificantconcentrationsofsmall,unal-

teredrock fragments are presentatthe sites,they must be

buried by the.soi[qikematerialstodepths greaterthan the

deepest trenches excavated by the samplers, which were

near 0.1 - 0.2 m deep..

Although size-frequency distributions of rocks in the

sample field are wetl established, those in the far field are
not well established. The abundance of rocks, the viewing

conditions, and the compiicated nature of the surface place

severe restrictions on the ability to obtain meaningful size-

frequency distributions of rocks. DisVributions as seen

within the sample fieId extend to rock diameters of about
0.2 m at the VL-1 site and 0.4 m at the VL-2 site (Moore et

al., 1979; Nnder et at., t977) but there are dearly rocks

larger than these in the far fields. If _:rne of _:!_:_e1aGe rock._

beyond the sample field of VL-2 are included, the cun:_?:,--

tive frequency distributionof the rocks down _-;)a d/a_:_ct_: _

of 0..1.4 m can be represented by:

N = 0.013 D -2"64

where N is the cumula_ve frequent? ....of rock_ :R_r m< _i_r

squared with diameters of D and 1argeco This impiic-_ _i,:;_,,
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the cumulative fraction of area (A) covered by assumed

circular rocks with diameters of D and larger is:

A = 0.0408 D -°'66

With tNs relation, the cumulative fraction of area covered

by rocks 0.14 rn and larger comes out to be 0.148. From the

sample field data, the additional area covered by rock

fragments _tween 0.1 and 0.14 m is 0.016, and for roc_
.035 to 0.1. m the additional area is 0._: _us, all rocks and

rock fra ts could cover 18.8 percent of the area and

i i .... :_. NASA TM 100470

general area of VL-1 (Simpson et al., 1978; Tyler eta|., 1976),

and this corresponds to a dielectric constant near 3,0. Here,

the diffuse com_nent of the radar echo is not separately
evaluated. About 460 km to the east and west of the VL-1

landing site, refl_tivities from continuous wave spectra

between 0.11 and 0A3 are estimated using a technique that
accounts for the diffuse component of the echo (Harmon

and Ostr0, i985), and these reflectivities correspond to

dielectric constants of 4.0 and 4.6, respectivelyo

fra ntsin logarithmic diameter bins is nearly constant t969). Such estimates are modeI de_ndent _cause die-

within the sample field (Moore et al., 1979) and the upper tectric constants de_nd on. the compositions of the mate-
limit of r_k diameters is difficult to assess, rialsa_d their buik densities. It shoutd also be reaIized that

3.2..4 _e Bulk Density

Average bulk densities for the entire sample fields can be porous vesicular basMts or pumice with vanab!e bulk

calculated from the fractions of areas occupied by .each densities would suffice as.well as _wders provided that

component and their estimated bulk densities. For the the pores or ves_.cIes'"_ _ are'_ much.... smMIe:_::_r_ than the radar

three components of VL-1, the bulk density of the entire wavelength. For exampIe, the diel_tric constants of a
sample field is 1624 kg/m 3 (range: 1298-1950). 4 For VL-2,
the bulk density is 1568 kg/m 3 (range: 1396-1740); using a

fraction of area covered by rocks of 0.188, instead of 0.14,

would change the bulk density of the general area to 1625

kg/m _ (range: 1.463- 1788).

3.2.5 ....Diel_tric Constants

Dielec_ic constants for _e landing sites _ve _n esti-

mated with the lander-orbiter radio relay links, and they
have _en estimated from radar reflectivities of quasi-

specular echoes for the general areas of the landing sites.
For VL-1, the dielectric constant from the iander-orbiter

radio link is 3.3 + 0,7 (Tang et al., 1977). For this determi-

nation, radar waves with 78.7-cm wavelengths (381 MHz)
were transmitted by the lander and echoes from the sur-

face were received by the orbiters. The antennae are
located on the back-left side of the landers so that the

reflections did nor come from the sample field but @om an

area behind the Iander which appears similar to the sample
field. The echoes came from a broad area 1.7 to --10 m from

the lander and from the upper 2.5 m of the surface (Tang et

al., !977). _ause of the large area and depths sampled,

basalt _wder or _nd. and a stTongv_icuIar ba_It would
be the same when their bulk den.sifies are the same°

However, the soiMike materials of Mars are akin to pow-

ders and not vesicular rocks. Most dry rock powders with

bulk densities near 1000- kg/m _ have dielectric constants

•_ twin 1.,8 and 2.1, bu.t those produced from. sili.dc rocks,

.such as granite, tend to.be near 1.:8 and those produced
from mafic rocks, such as ba._Its, tend to be near 2.0.

Die!ec_ic constants of d W rock powders with 40-percent

porosity range from about2.6 for silicic ( ranite)- powdersg _ _. . ..

to about 3.4 for _fic (basaIt) powders. The dense rocks
(_ .... _ _have dielectnc constants that range from 5 ;:_Tam.t:_:_,_to 9

(basalt). The mafic chemical com_sitions of the soiI-like
materials on Mars (TouImin et aI.; 1977; CIark et a.l., 1982)

suggest that a modeIfor basalt and basalt _wders is more

likety than one for siIicic rocks. Here, it is assumed that the

soiMike n_'_.terials are composed of powders derived from
basaltic rocks with zero porosity, a bulk density of 2600

3 d .. .kg/m., an :a diel_t.n.c constant of 8. The Ray_eigh mixi_.g
formula (Campbell and Ulrichs, 1969) is then used to

calculate the dielectric constants using the estimated bulk

densities and vice versa;, see figure 3-3.

the derived dielectric constant .is likely to represent an Using the procedures above, the bulk density for the

average for the entire sampIe field. The derived dielectric lander-orbiter dielectric constant (3.3 + 0.7) is i612 kg/m _
_5

constant can be compared, with those computed with (range: 1292-1b:7). For the Ea.rth-based radar data, buIk
reflecti;_ties from broad areas (=.600 km in diameter) in the densities are 148G .1857, and 2026 kg/m _ fer dielectNc

general vicinity of the site that was obtained by terrestrial, constants of 3,0, 4,0, and 4.6, res._cViveIw Taese bulk
based radars. During the Viking site certification efforts densities compare weIl with the 1624 kg/r_2 (ra_._ge: 1Z98-

thatemr_loved12.6-cmwavelenethcontinuous-waveradio 1950) estimated for the entire sample field (see _c_on

--- r-_-----O-transmissions, a reflectivity near 0,074 isestimated for the 3.2.3) and earlier results that use a ?.es:_coas_'._;:r _;.__:i_(_"_i_

Here, and elsewhere, calculated bulk densities are given to four figures for iIlustrative p_rposes, b_:t _?_eye r(_c,,.r_i:_.....__i;_..'._,:

about two figures.
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(Moore et al., 1987). It is noteworthy hhat the range of

estimated bulk densities of drift material is essentially

excluded from the range of bulk densities calculated be-

cause the fraction of area covered by clrift material and its

bulk density are small.

The problem can be turned around to estimate the dielec-
tric constants of the soil-like materials from their bulk

densities. Drift material, according to the model, has a

dielectric constant of 2.35 (range: 2.11 - 2.62) s and that of

blocky material is 3.27 (range: 2.43 - 4.50).

Radar data on the VL-2 site are either lacking or of poor

quality. The site is not accessible to the terrestrial-based

radars. Additionally, the nearest Viking orbiter bistatic

radar ground track is some 10° or so to the south, and no
reflectivities are reported. Dielectric constants obtained

using the lander-orbiter relay link range from 2.8 to 12.5

(Tang et al., 1977). This range of values is so large that it

provides little useful information. The low estimate of the

dielectric constant gives a bulk density of 1393 kg/m 3

which is consistent with the large angle of internal friction

of crusty to cloddy material. The upper limit of 12.5 is more
consistent with some meteorites than with dense mafic

igneous rocks (see for examples, Campbell and Ulnchs,

1969). Based on the densities of the components, the

dielectric constant of the sample field should be near 3.19

(range: 2.81 - 3.64), or slightly smaller than that of VL-1. For

crusty to cloddy material, the value is 2.81 (range: 2.43 -
3.27_.

There are several reasons why the estimates above should

be viewed with some caution. First, it is not possible to

settle on a unique model from the data because there are
other plausible materials and values that could be used.
Some of these variables are embodied in the data on rocks

and dry rock powders (Campbe|l and Ulrichs, 1969). The
mineralogy of the soft-like materials is unknown so that

materials other than dry rock powders are possible. One

such material is clay (Banin and Rishpon, 1979). Dry,

clayey soils with bulk densities of 1200 -1300 kg/m 3have
dielectric constants near 3 when measured at 7.5-cm and

60-cm wavelengths (Hoekstra and Delaney, 1974). Dielec-
tric constants near 2.5 have been obtained at 10 and 100-cm

wavelengths for dry, sandy, silty, and clayey soils with

unspecified bulk densities (Von HippeI, 1954). However,

for plausible geologic materials, dielectric constants near 2

imply low bulk densities thatare near 10_ kg/m 3 (fig. 3-

3). Second, the problem of diffuse scattering of the radio
waves by surface and subsurface discontinuities that are

about the same size as the wavelength of the radar (such as

rocks, crater forms, and irregularities along contacts be-

tween depositional units) has not been fully addressed.

This is probably more important at the 12.6-cm wave-
length of the Earth-based radar than at the 78.7-cm lander

wavelength because smaller rocks are commonly more

abundant than larger rocks. Third, the Earth-based radar

footprint is large compared to the landing site and to the

size of the sample field, so that other materials not repre-
sented at the landing sites and in the sample field could be

present along with the materials in the sample fields and at

the landing sites. Fourth, the analyses compare inferred

properties of materials from the uppermost 0.1 - 0.3 m with

radar properties which may apply to materials at depths
measured in meters.

3.2.6 Thermal Iner_ias

Bulk thermal inerfias for broad areas (60 km x 60km) that

include the Viking landing sites are 9.0 + 0.5 (VL-1) and 8.0
+ 1.56 (VL-2) (K2effer, 1976). These thermal inertias are

large when compared with those of most of Mars (PaI1u-

coni and Kieffer, 1981; Jakosky and Christensen, 1986a)o

Spectral differencing techniques allow estimates of the

fraction of surface covered by "rocks" and of the thermaI

inertia of the remaining part (the fine component) (Chris-
tensen, 1982, 1986a,b; Kieffer et at., 1977). I_ocks" are

assumed to have a thermal inertia of 30 which corresponds
to a rock about 0.i m across (see Fdeffer et aI., 1973). The

actual situation is more complicated than most models

assume for several reasons. First, the apparent thermat
inertias of rocks vary depending on the size of the rock. For

example, thermal inertias of rock outcrops and rocks targer
than about 0.3 mhave inertias near 55 and those smaller

than 0.3 m have inert/as that decrease in some way to a

limiting value of 10at the 0.01 - 0.03 m sizes (Jakosky, 1986)o

Second, thermal inerfias of materials with uniform par-

ticles remain near 10 down to grain sizes near 500- 1000

mm because of the thermal conductivity of the pore gas
(Jakosky, 1986), rather than decreasing in a uniform man-
ner. Below 500 mm, thermal inertias decrease h_ a uniform

manner from 10 to 1 or 2 at the 1 - 10 mm sizes. Third,

thermal inertias of finer-grained materials are uncertain

but are probably near 1 - 3. Finally, although it appea_'s

reasonable to consider the VL-2 landing site a two comp_

nent system of fines and rocks, the VL-1 site is cleariy _?

least a three component system.

For the VL-t site, the fraction of the surface covered by
"rocks" is estimated _o be about 0.15 + 0.05 from _he

thermal data, and the thermal inertia of the remarrying
fraction is abou_ 7.5; for the VL-2 site, the frac_on of area

" k "covered by roc s _s0_20+ 0.10 from the thermal da_a ant!

the thermal inertia of the remaining components _s abou_

Here, and elsewhere, dielectric constants inferred from bulk densities are given _n three figures for illustrative purposes, b_

_hey are only significant to abou_ _wo figures.

Thermal inertias are reported in units 103 cal cm 2 s'_/2K-_
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Figure 3-3.- Model relation between dielectric constant or quasi-specular echo reflectivity and bulk

density (heavy solid line).

Dielectric constant is derived from reflectivity using the Fresne] reflection coefficient (see Tyler et

al., 1976). Bulk density is calculated using the Rayleigh mixing formula (see Campbell and U]richs,
1969). A dielectric constant of 8 and a bulk deusity of 2600 kg/m 3 represents a "parent" basaltic rock.

If the "parent" rock is powdered or becomes vesicular, the bulk density will decrease, and the

porosity will increase, with a corresponding decrease in dielectric constant as described by the

heavy solid line. Thus, a basalt powder or vesicular basalt with a bulk density of 1000 kg/m 3 will
have a dielectric constant of 2.1. The soil,like materials of Mars are more a_n to basalt powder than

vesicular basalt. Dashed lines indicate the effect of a + 25 percent error in reflectivity on the

estimated bulk density. Cross-hatched area indicates the range of reflectivities for the northern

latitudes of Mars (Harmon and Ostro, 1985; Harmon et al., 19.82) and the corresponding die]ectric

constants and bulk densities. Heavy dashed line shows that a "parent" rock with a dielectric

constant of 9 and a bulk density of 2700 kg/m 3 produces similar results. Data points (obtained

graphically from Campbell and Ulrichs, 1969) for silicic powders of aplite granite (_3) and mafic

powders of olivine basalt (dots) are shown for comparison with the model presented herein.

Horizontal bar represents data for dry, clayey soil at 7.5-cm and 60-cm wavelengths (Hoekstra and

Delaney, 1974); dotted line indicates calculated change of dielectric constant with bulk density.

Note that a dielectric constant near 2 implies a bulk density near 1000 kg/m 3 for all materials.
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8.0 (Christensen, 1982). These "rock" abundances are

consistent with those observed at the landing site.

Estimates for the fine-component thermal inertias observed
at the landing sites can also be made. This is done by
assuming that the average thermal inertia of the entire rock
population is 40 and the thermal inerfias of the entire
sample fields are the same as those obtained from orbit;
then, the mixing curvepresented in Fdeffer et al., (fig. 10,
1977) is used. This analysis is similar toone by Moore et al.,
1987. For the sample field of VL-1 with a thermal inertia of
9.0 _+0.5 and the observed rock abundance (0.08), the fine-

component inertia is about 8.0 + 0.5. This fine component
actually consists of drift and blocky materials. If the
thermal inertia of drift material is taken to be 3, then the

blocky material has a thermal inertia of about 9.3 + 0.5. If
the "rock" abundance (0.1.5+ 0.05) is used, the fine-compo-
nent inertia becomes 7.2 + 1.0, and that of blocky material
is 8.2 + 1.4.

The low thermal inertia for.drift material is based on

inertias corresponding to the lower bulk densities. Horai,
1979, calculated thermal inertias of 2 - 3 for loose (densities

of 790 - 1500 kg/m 3) and 5 - 6 for dense, compacted
(densities of 1700 - 1850 kg/m 3) lunar soil simulants from
Ns data on thermal conductivities. There is also an in-

crease in cohesion with compaction or increased bulk
densities of lunar-like simulants (Mitchell et al., 1972).

For the sample field of VL,2 with a thermal inertia of 8.0 +
1.5, the observed rock abundance (0.14) suggests that the
fine component of the surface has a thermal inertia of 6.3 +
1.5 (see Moore et al., 1987). As there is !ittle or no drift or

blocky materiais, tiffs value is the therma! inertia estimate
forcrusty to cloddy material. If the "rock" abundance (0.20

+0.10) is used, the thermal inertia of the fine component is
5.6 + 1.4.

32,7 Surface and Soil Temperatures 7

The annual temperature range for the martian surface at
the Viking lander sites has been computed by Kieffer, 1976,

several lines of evidence. First, the particle size is in the on the basis of thermal parameters derived from observa-
range of 0.1-10 mm. Second, the bulk density is very low tions made with the infrared thermal mappers (IRTM) on
and near 1150 kg/mL Third, the cohesion is very small.
For fine-grained, unconsolidated, loose particulate materi-
als, thermal inertias should be about 1 - 3 in martian

conditions of tem_rature and atmospheric pressure
(Kieffer et al., 1973; Jakosky, 1986). Laboratory measure-
ments of the effects of particle size, compaction or bulk
density, and cohesion on thermal conducfi_fies at martian
atmosphere pressures again show that fine-grained, low
density materials with small cohesions are expected to
have low thermal inerfias (Wechsler and Glaser, 1965;
Wechsler et al., 1972; Fountain and West, 1970). It is well
established that thermal conductivities (and, hence, ther-

mal inerfias of particulate materials with moderate bulk
densities that are more or less constant, and that have very
small cohesions) decrease with decreasing particle size
(see, for example, Jakosky, 1986), but data on loose to
moderately dense materials with small cohesions and 0.1
- 10 mm particles are lacking. Perhaps the best available
analog for drift material at this time is loose pumice pow-
der, crushed to pass a 44 mm sieve, which has a bulk
density of 880 kg/m 3 (Wechsler and Glaser, 1965). For

nominal specific heats in the range of 0.16 - 0.20 cal g_K -1,
the thermal inertia of this powder would be near 2 to 2.5 at

martian atmospheric pressures. Compaction of loose,
fine-grained particulate materials increase their thermal
inertias, bulk densities, and cohesions. The data of Foun-

tadn and West, 197G for particulate basalt (37- 62 mm) at
martian pressures and temperatures suggest a weak de-
pendence of thermal conductivities on bulk densities that
range from 790to 1500 kg/m 3. Thermal inertias calculated
from their data are near 2.0 to 3.2 with lower thermal

the Viking orbiters. Surface temperatures at the two sites
for a martian year were computed and are presented in
figure 3-4. Because the model parameters are derived from
remote sensing observations, the temperature profiles
represent an area-weighted average of the soil and rocks.

At midday, the temperature reaches a maximum near the
= 1 °autumn equinox (areocentric longitude L 80 ), rather

than at n_dsummer, and has a secondary peak near the
spring equinox (L = 0°). TNs large semdannual behavior
results from the eccentricity of the orbit of Mars, tending to
off_t the effect of its polar tilt in the Northern Hemisphere
(the effects add in the Southern Hemisphere).

The thermal behavior of the two sites is quRe different. The
VL-1 site is near the latitude which experiences the small-
est annual variation of temperature. The VL-2 site, in
contrast, has well-defined seasons. The maximum tem-

peratures occur in the late summer and decrease steadiiy
until midwinter.

With the Viking lander images used to estimate the rock
component on the thermal emission, the daily temperature
behavior of the soil alone was computed over the range of
depths accessible to the landers. When the VL_I and VL-
2 sites were sampled, the daily temperature ranges at the
top of the soil were 183 to 263 K and 183 to 268 K, respec-
tively.

The computed range of subsurface temperatures for the
Viking soils is shown ir_figure 3-5. The diurnal variation

7 The materials of section 3.2.7 are excepted from "Soil and Surface Temperatures at the Viking Lander Sites," by H.H.
Keiffer, 1976_
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Figure 3-4.- Daily maximum, minimum,

and average surface temperatures at the

two Vi_ng landing sites through a mar-

tian year. _e ma_mum tem_rature oc-
curs about 1 _ after noon; the _nimum

occurs at da_ (_effer, 1976).
Temp

(K)

Figure 3-5.- Temperatures for the soils at

the Viking lander sites. The two envelopes

(right) show the temperature extremes as a

function of depth for the average VL-1 (22 °
N) and VL-2 (48 ° N) soils. The subsurface

temperature profiles for somewhat finer-

grained material at the VL-1 site are shown

at 4-hour (4/24 of a martian day) intervals
(left) (Kieffer, 1976).
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decreases with depth with an exponential scale of about 5

cm. The temperatures at a depth of 24 cm differ negligibly

from the average surface temperatures, 217 and 222 K at

VL-1 and VL-2, respectively. The maximum temperature

of the soil sampled from beneath rocks at the VL-2 site was
calculated to be 230 K.

3.3 GLOBAL COMPARISONS

In this section, the estimated values of dielectric constants

and thermal inertias at the Viking landing sites are com-

pared with values measured on a more global basis using

remote sensing techniques.

To recapitulate, the landing sites contain four materials at
the surface:

(1) Drift material is a loose, unconso|idated dust with a

particle size in the range of 0.1 - 10 mm, a bulk density near

1150 kg/m 3, a dielectric constant near 2.4, and a the_l

inertia in the range of 1 - 3. (2) Crusty to cloddy material

has small, but variaNe cohesions, a moderate bulk density

near 1400 kg/m 3, a dielectric constant near 2.8, and a

thermal inertia near 4 - 7. The cohesion is, in part, related

to cementation by some sulfur- and chlorine-bearing

compounds. This cementation is responsible for the crests

and prismatic clods. (3) Blocky material has the largest
cohesion of the soil-like materials, a bulk density near t600

kg/m 3, adielectric constant near 3.3, and a thermal inertia

near 7 to 9. The cohesion ofblocky material is partly related

to cementation of grains by salts of sulfur and chlorine. (4)

Rocks have very large cohesions, bulk densities near 2600

kg/m 3, dielectric constants near 8, and thermal inertias
between 30 - 60.

The estimated dielectric constants for the components

observed at the landing sites can be compared with those

derived for larger areas on a regional and global basis. The
literature on radar echoes report the reflecfivities of the

quasi-specular echoes. Hence, when dielectric constants

are presented herein, the reflectivities of the quasi-specu-
lar echoes immediately follow in parentheses.

The average dielectric constant for Mars is about 3.0 (0.07)

at 12.6-cm wavelen_h (Downs et al., 1975), but there are

considerable variations in magnitudes. For the Tharsis

region (near 22 ° N), the average reflectivity and standard

deviation of reflecti_ (0,_1 + 0.015)from analy_s of

dielectric constants that are near 7 (0.20) (Downs et al.,

1975) suggest that there are large rocks or extensive rock
units at or near the surface. Some reflectivities from the

delay-Doppler observations are less that 1 to 2 percent

(Downs et ai., 1975), corresponding to dielectric constants

less than 1.5 to 1.8, but these low values may not represent
the values for the actual surfaces (Downs et aI., 1975). For

this reason, the lower bound for martian dielectric con-

stants may be considered to be about 2.3 + 0.4 (figs. 3-3 and
34).

As mapped between +60 ° latitude at a scale of approxi-

mately 120 kin, the thermal inertia is seen to vary geo-

graphically with large expanses of nearly constant thermal
inertia; the probability density of the inertia values is

bimodal with modes at about 3 and 7 and a total range of
about 1 to 15 (Palluconi and Kieffer, 1981). Low thermal

inertia (1 - 4) areas, which occupy 20 percent of the area

sampled, include Amazonis Planitia, the Tharsis region,
around Elysium Mons, and Arabia. High thermal inertia

(8 - 15) areas, which also occupy 20 percent of the area

sampled, include Argyre, Hel!as, Isidis, Utopia, Acidalia
Planitia, and Va|ies Marineris. The remaining 60 _rcent of

the area sampled has intermediate thermM inertia.

Dielectric constants and thermal inertias at the same loca-

tions on Mars are positiveIy correla ted (Jakosky and Chris-

tensen, 1986a,b; Jakosky and Muhleman, 1981). For ex-

amp!e, _tween 14 ° and 22 ° S, a correlation of quasi-

specular reflectivities obtained with 12.5-cm radar and

thermal inertias (Jakosky and Christensen, 1986a) is bimo-
dal with one mode near a dielectric constant of 1.8 (0.0!5)

and a thermal inertia of 2.2, and a second mode near a
dielectric constant of 3.0 (0.07) and a thermal inertia of 6.

This second mode is stronger than the first and impairs that

most of the materials in this region have these properties.

Similar results are obtained near 22° N (Jakosky and

Muhleman, 1981 ). Comparisons of more recent radar data
(Harmon and Ostro, 1985; Harmon et al., 1982) and ther-

mal inertia maps (Pal|uconi and Kieffer, 1981; Christensen,

1986a) support the positive correlation between dielectric
constants and thermal inertias (fig. 3-6).

Low values of thermal inerfias are inferred to be large

areas of fine-grained dust deposits (Kieffer et al., 1977).

The particle size is less than 50 mm, and probabIy in the

range 1-20 mm (Kieffer et al., 1973; Jakosky, 1986). Smail

thermal skin depths require that these deposits are at 1east

echoes from continuous-wave dual _lafi_tion observa- several centimeters thick (Jakosky, 1986), and analysis of

tions (Harmon et a1 1982:) imply an average dielectric image and radar data:suggest dust mantling more thaa I-

constant of 2:3 and a standard deviation of a_ut 0,4. 2 m'tNck (C_istensenr 1986a}: _isiaterpretation is cor_-

Elsewhere in the north, the average is a_ut 317 (0.10I _+ sistent withbulk densities inferred from radar reflectivity

0.023) (Harmon and Ostro, 1985). In &e southern latitude

band (14 ° S - 22 ° S), delay-Doppler observations indicate

that below-average dielec_c constants chiefly are found

in the Tharsis region south of Arsia Mons, near Manga|a
Vallis, and near Eos Chasma, while they are above average
between 0° and 110 ° W (Downs et al., 1975, 1973). Some

data (jakosky and Christensen, 1986). Because of the smaii.

particle size of airborne dust (e.g., Toon et al, 1977; PolIac;.:

et aI., !979), regions of low-inertia probably repr;c:sc_:i:_

deposits of airfall dust (ZimbeIman and Kieffer, !i91"9_
Christensen,1986a), but airfall dusts and rev_.orked _i ::i: _!

dusts from volcanic eruptions carmot be exciuded beca'ac..:
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mode describ_ by Jakosky and Christensen (1986a).
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small dielectric constants and low inerfias are associated
with the volcanos and volcanic terrains of the Tharsis and

Elysium regions. The relatively large amounts of sulfur
and chlorine in the lander soil-like material would support
this contention (Settle, 1979). The small dielectric con-

stants and low &ermal inerfias are very similar to those of
drift material at the VL-1 site .so it is i_erred that material

on a global scale with small dielectric constants and low
thermal inertias are similar to drift material in mode of

origin as well as mechanical properties. The lack of thicker

sites and comprising the bulk of the regions of high ther-

mal inertia and moderate dielectric constant, would repre-

sent no serious problems to landing spacecraft and travers-

ing vehicles. Both the radar and thermal data indicate that

these types of materials are more prevalent on Mars than

the compressible materials with low bulk densities, small
dielectric constants, and low thermal inertias.

In summary, drift material at the VL-1 site is probably a

good analog for materials in the Tharsis region of Mars and

and more extensive drift depositsat the VL-1 site isproba- elsewhere where dielectric constants are small and ther-

blyrelated to a general deflation of the region (Mutch et al., maI inertias are low because drift material has a small

1976b;Arvidsonetal, 1979) or to the occasional removal of dielectric constant and a low thermaI inertia ....Crusty to

dust (Arvidson et al., 1983; Moore, 1985; Jakosky and

Christensen, 1986), combined with the meteorological

control of regions of deposition of new dust (Zurek, 1987).

Thus, the combination of a low thermal inertia and a small

dielectric constantsuggests the presence of a si_ficant

thickness of a _rous, compressible, soil-like material with

a low cohesion and small angle of internal friction. It is
estimated that the dielectric constant of drift material is

between 2.1 and 2.5, corresponding to a bulk density

between about 1000 and 1300 kg/m 3. The thermal inertia

is estimated to be within the range from I to 3. Foo_ad 2

of VL-1 penetrated drift material some 0.16 m upon land-

ing at 2.3 m/s. Because vast expanses of materials with
small dielectric constants and low the_l inerfias, such as

the Tharsis and Arabia regions, are thought to be si_lar to

this material, the surfaces in those regions could present

serious problems to landing spacecraft and other vehicles

that are not suitably designed.

The interpretation for regions of high thermal inertia is

more problematical. While only loose, fine dust can have
a low the_al inertia, a Ngher value can result from: (1)

cementation, which bonds fine particles together, (2)

compaction, which will increase both the bulk density,

cloddy matefiaI is probably a go_ analog for much of the
materials of Mars because its dielectric constant and ther-

mal inertia are nearly the same as the principal modal

value of Jakosky and C_istensen (1986a). BIocky material

represents a denser and better cemented soiMike material
because its dielec_ic constant and the_al inertia are

larger and higher than the principal modal value described

in Jakosky and Christensen (1986a).

There are, of course, problems related to the interpretation

of thermal inertia and didectric constant values on a global

basis. The thermal inertia values apply, in a bulk sense, to

the uppermost 0.01-0.1 m of the surface materials because

this is the depth to which energy can conduct over the

course of a day. The radar reflectivities apply to materials

to much greater depths below the surface. Calculations for

the powerattenuation of 12.6-cm radar (Von Hippie, 1954)

in materials with loss tangents and dielectric constants

consistent with dense and powdered ba_It (Campbell and

Ulfichs, 1969) indicate that the uppermost 0.3 m of a dense
basalt would be sampled by the radar; for rock powders

with a dielectric constant of 2, the uppermost 6 m wou_d be

sampled° Variations in the correlations between these

properties can then be explained by the variations in

vertical structure of the surface such as layering or by the

conductivity, and cohesion of fine particles, (3) a matrix of presence of multiple components comprising the surface

larger particles with a correspondingly larger butk thermal

conductivity, or (4) the presence of coarse particles within

a matrix of fine particles. Based on a comparison of the

thermal and radar properties on a global basis, cementa-

tion or bonding is a likely cause of high thermal inertias

(Jakosky and Christensen, 1986); certainly, however, many

regions will depart from this general trend° 13oth crusty to
cloddy and blocky materials have cohesions tha t are partly

due to cementation and they have bulk densi_es that are

in varying fractions, both of which are seen at the lander
sites.

The issue of multiple components of materials is complex.

Clearly, the Viking lander sites can be described by the

presence of several components at each site, with a total of
four different materials at both sites. Materials at each site

have variable areal dimensions, thicknesses, and spatial

distributions. The global remote-sensing data onty a liow

relativelylarge; __of_e_ pro_rfies would contribute for _e determination of overalI pro_rties and ......do not

to a high thermal ine_ia. BIocky material aI_ contmns

relatively.coarse pa_ides along wi& fine p_ficles. _e

difference in bulk density _tween the materials at the

lander sites is not sufficient to account for the large v_-

ations in thermM inertia _ _at cementation is r_uired. It

is imagined that surfaces consisting predo_nanfly of

moderately dense, cement_ or _nd_ materials, analo-

gous to crus_ to cloddy and blocky materials at the Iander

allow the abundance of as many components as tbds to be

dete_ned. _e relative abundances of patches of each

com_nent, as weIl as the size of each patch, cannot be

dete_ned from the preen fly a vai!abIe data a ta spafia!
scaIe finer than approximate!v 1_ km. Higher resolution

information, from Mars Ob_rver for exampIe, wouid

provide more-detN1ed results.
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3.3.1Thermal Model 8

On the basis of observations made by the Viking Orbiter

IRTM instruments, Kdeffer et al., 1977, have developed a

model of surface temperatures on Mars. The objective of

this model is to account for the best-understood and larg-

est terms in the heat equation: the diurnal and annual

variation of insolation and the conduction into the ground.

The thermal model is intentionally simple and does not

include a variety of geophysical processes which certainly

occur but whose quantitative behaviors are not well known.

The thermal model assumes that surface physical proper-

ties are homogeneous with depth and are uniform overthe

planet. The atmospheric properties are taken to be con-

stant, with no cloud formation of any kind at any time. A

CO 2polar cap forms, and the surface radiometric albedo is
asumed to change discontinuously when any frost is pres-

ent. The CO 2 condensation temperature is fixed at 149 K
rather than following the predicted surface pressure vari-

ation. There is no latitudinal transport of heat. No slopes

are included. The absorption of sunlight is Lambertian, an

ideal blackbody surface emission is assumed, and no heat

flows across the lower boundary.

Using this model, the annual variation of daily extreme
and daily average tempera_res is shown in fi_re 3-7. The

range of surface temperatures is 150 to 290 K.

3.4 SPECIAL CASES 9

Several special cases need to be considered when discuss-
ing the surface of Mars. Some of the cases may be impor-

tant because they represent h_ards during landing, or

traverse ve_cles may have difficulW negotiating them.

Fortunately, the cases below that are hazardous generally

represent uncommon situations.

3.4.1 Canyons and Valleys

Some martian canyons are huge by terrestrial s_ndards,

and both the c_yons and the v_leys can present severe

problems for landers and for vehicles. The problems

accrue from both slopes and the materials of the slopes.

The severity of the problems are not always clear because
of the natural variables involved.

inspection of the images suggest that there are local out-

crops of rock with slopes that may exceed 45 °.

Some of the slo_s are probably formed of talus or scree at

or near the angle of repose. The grain sizes of the rocks or

materials in the talus depend on the condition of the source

rocks. The si_s could be uniformly fisbsize (or smaller) or

there could be a specCum of sizes that includes large
blocks, Whatever the size of the _terials in _e talus or

scree slopes, _ey may be difficult or impossible to negoti-

ate. T_s is particularly true when the slopes are near or at

the angle of repose of the materials, and these can range

from 30 ° to 45 ° depending on the shapes and_sizes of the

fra_ents in the talus.

3.4.2 Blocky Craters and Crater Blockfields

Fresh, blocky impact-craters can be ve_ rough. Their

mean slopes, w_ch arise fromblocks in their ejecta, maybe

as large as 25 °. Similar things can be exacted for local
block fields around impact craters. Slope angles of the

interior walls of impact craters may also _ large and may
exceed 40 °.

3.4.3 Sand Dunes

Based on te_estfial experience, mean slopes of sand dune

fields may be taken as 6.7 °: (Viking Project Office, 1974).

Locally, l_ward slo_s of the dunes are 30 ° to 35 ° and a t or

near the angle of repose of cohesionless sand,

3.4.4 Lava Flows

Lava flow surfaces can be smooth to extremely ro_gh, and

weak tostrong. Each lava flow surface must _ judged on

an individu_ basis. Pahoehoe flows are generally rela-

tively smooth, but those of a'a and blocky flows can be as

rough, or rougher than blocky craters. Rock and block
f ,surfaces o a a and blockyflows are commonly jagged and

sharp. In general, the materials of lava flows are strong,

but the shelly and slabby pahoehoe flows are composed of
voids surrounded by thin shells and slabs which collapse
when loaded.

A profile of a landslide in Ius Chasma illustrates the some

of &e problems with canyons and valleys; see fi_re 3-8.
Relief from _e chas_ floor to its rim is about 6.5 km.

Slopes on the landslide of the chasma floor are generally

moderate, but, IocalIy, they are as large as 22 ° at a scale

length of 2 _. There will _ slo_s larger than on the

chasma floor at scale len_hs appropriate to landers and
vehicles. The relief of _e chas_ wall is about 3.7 km and

the mean slope is 29 °. Locally, the sIopes exceed 32 ° and

3.4.5 Polar Re_ions

The results from the Viking Orbiter Bistatic Radar Experi-

ment indicate that variations of slopes or roughnesses in

the north poIar region are comparable to those observed

near the equator (Simpson and Tyler, 1981 ). !nterpretafion

of _e dieIectri¢ prope_ies of the north poIar c_p are

uncertain, but dusts, ices, and snow may occur a_ tbe
surface.

8 The materials of section 3.3.1 are excerpted from 'q'hermal and Albedo Mapping of Mars During the Viking Prima_ M:i_-_;i;_;_/
by H.H. Kiefer, T.Z. Martin, A.R. Peterfruend, B.M. Jakosky, E.D. Miner, and F.D. PaHuconi, 1977.

9 The materials of section 3.4 are excerpted from "Preliminary Mars Surface Models," by Henry J. Moore, 1988, urtpublished_
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Fisure 3-8.- Profile of Ius Chasm; (Moore, 1988).
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Mars Astrodynamic Model -

4.1 INTRODU_ION 4.2.2 S_ndard Reference Coordinate Systems

The astrodynamic data described herein is intended to be
a source of reference for Mars. Definitions, models, and

values of astrophysical quantities are presented which are

required to perform: (1) flight path design, (2) navigation

design, and (3) science observation design.

A detailed Mars model is emphasized. Astronomical

constants, time scales, and reference coordinate frames are

presented. The Earth model is given only to the extent

necessary. Gravitational constants of other planets and

general astrc_ynamic constants are included.

4.2 GENERAL CONSTANTS 2

4.2.1 Time Systems

Ephemeris time (ET) is the mathematically uniform time
scale used as the independent variable in the gravitational

theories of the motion of the Sun, the Moon, and the planets

and in the argument for the ephemerides of these bodies.

For navigation and trajectory work, ephemeris time is the
reference time scale used.

For civil time keeping, Coordinated Universal Time (_C)

is referenced. The UTC is the time scale actually u_ in

most parts of the world, and it is obtained from various

radio time services. The UTC is an approximation of
universal time (UT), but it is actually measured with

respect to aton_c time. The rate of UTC is therefore

constant, but periodic step adjustments are made by the
Bureau International de I'Heure to maintain an approxi-
mation to u_r. Transformations between ET and _C are

defined by time-varying offsets that are determined from
coordinated measurements of the astronom]caI and atomi" c

time scales. As of January 1,1986, the DET (i.e., ET-UTC)

is measured at 55.185 sec (refer to Supplement to the
Astronon_caI Almanac, 1984). The value of DET has been

increasing steadily over the 20th century, but it cannot be

predicted accurately.

The fundamental inertial coordinate systems used for

representing astrodynamic quantities in this document are

EME50 and EMO50. These systems are defined by the

mean orbit and the rotation pole orientations of Earth on

the standard epoch. The standard epoch used to establish

inertial reference systems for all cataloging of astrody-

namic quantities until 1984 has been the beginning of the

Besselian year, which is 1950,0 ET. This date is also

designat_ B1950, which corres_nds to Decem_r 31,

1949 at 22 hr, 9 _n, 38.076827797 _, and this is equal to

Julian Ephemeris date (JED) 2433282.423357370692. (The

0 Julian date is Greenwich noon on January 1,471.3 B.C.) 3

4.2.2.1 Earth Mean Equatorand Equinox of 1950.0 (EME50)

The EME50 system is defined by the z-axis in the direction

of the mean rotation pole of Earth on the standard epoch.

The x-ayds is in the direction of the vernal equinox defined

by the ascending intersection of the mean orbit plane on
the mean equatorial plane. The y-axis completes the right-

handed orthogonal system.

4.2.2.2 Earth Mean Ecliptic and Equinox of 1950..0 (EMO50)

The z-axis of the EMO50 system is defined by the mean

orbit pole of Earth on the standard epoch. The x-axis is

equal to the vernal equinox and the y-axis compIetes the

right-handed orthogonal system.

The EMO50 systemis obtained from the EME50 system by

a single rotation about the x-axis by an a ng|e equal to the

mean obliquity at the B1950 epoch; specifically,

es0 = 23.4457888-889 deg

4.2.3 Table of General Constants

The fundamental constants which contribute to the defini-

tions of gravitagonal forces are the definitive Gaussian

The materials of part 4 are excerpted from the document: "Mars Observer: Planetary Constants and Models -- Pre_ary," by C.L. Yen and
W.H. Blume, JPL Document D-3444, Jet Propulsion Laboratory, July 1986. _ere appropriate, updates and corrections have been incorpo-
rated into the print d_enL

2The Interna_on_ As_ono_c_ Union (_U)(I976) System of Astronomical Constants (ref. 44-1)was adopted by the General Assemb!y of the
_U at Grenoble (ref. _2). Ad_onal re_Iu_ons conce_g escales and the as_ono_cal reference systems w_e adopted by the IAU

1979 at Mon_e_ and m 1982 at Pa_ass. A complete _st of these resolutions with constants, fo_ulae, and explanatory notes _savailable m
the Supplement: to _e As_onomi_ _anac for 1984 (ref. _3). _e so_ces _st l_ted pro_de the basic constants contained _n th_s
docent. However, pr_c_pal ephemerides of planets are bas_ on the _mpu_afions made at JPL, i_d _ey include sfight m_f_c_ons to
the IAU (1976)System of Astrono_cal _nst_ts m order to ensure a best fit of the ephemend_ to &e ob_at_on_ data:

........

_Be_g in 1984, the IAU (_ternafion_ Astronomical Union) has introduced a new system of as_onomicat constants, time scales; and
reference coordinate frames into the Astronomic_ _anac. _s new system, termed J2_, _ a standard e_ of January 15,2000 ET,
corresponding to the J_an date JED 2451545i0.
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constants, the 1-AU light time, and the mass ratios of plan-
ets to the Sun. These fundamental constants and the

derived constants (GM's) are summarized in table 4-1.

These are Jet Propulsion _boratory (JPL) adopted num-

bers and are consistent with the IAU (1976) values except

for small adjustments made to fit obse_ations (Lieske,
1985). The inherent uncertainties in the _owledge of the

mass ratios result in only a few si_ficant digits in the GM

values (si_ificant digits are underlined in the table),

however, the DEII8 ephemendes created at JPL u_ _e

full 18-digit numbers given in the table.

Solar constant W_n _ (i.e., _e flux of total radiation re-
ceived at I AU) given is consistent with the value used by

the JPL DP_J code (George_c, 1971).

Other planet_ constants of EaCh and Mars are also

included in table 4-1. Earth pole and prime meridian

orientations depicted are based on the model of Stur_,
1971. Recent IAU recommendations (Davies et al., 1986)

are adopted for the Mars ro_tional elements (see _on
4.4.2.3).

4.2.4 Planetary Ephemerides

Two sources of planetary ephemerid_ are available. For

high precision trajectory propagation and navigational

analyses, JPL Developmental Ephemendes (DE)can be

used. For medium accuracy mission design analyses,

simple conic orbital elements might _ u_. Both of these

two t_s of data are discussed here.

4.2.4.1 Precision Planetary Ephemerides

Each numbered version of the JPL DE is a computer file of

data for compu_ng the _sition of the Sun and of the

barycenters of the nine planetary systems relative to _e

solar system barycenter. (A geocentric lunar ephemeris

(LE) is also included.) The file gives Chebyshev polyno-

mial coefficients for evaluating the position of each body

over a specified period of time (Standish, 1982).

The ephemeris coordinates given for Mars are of the

barycenter of the martian system (Mars plus Phobos and

Deimos).If positions of the center of mass of Mars or of the

satellites are required, a compatible satellite ephemeris
must be used (see section 4.5.2). Because of the small size

of the satellites, the barycenter to center-of-mass correction

is never greater than .25 m, and can usually be ignored.

4.2.4.2 Analytical Ephemerides of Mars and Earth

Analytical expressions for the mean orbital elements of the

planets can be used for efficient and moderately accurate

ephemeris computations. A parti_lar model, using poly-

nomial expressions for the mean orbital elements, was

defined by Sturms, 1971. These expressions are used in JPL

navigation software to define the mean orbit plane of the
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planet. The heliocentric orbit elements are referenced to

the Earth mean orbit and equinox of the 1950.0 (EM050)

coordinate system. Mean orbital elements of Earth and
Mars as a function of time are listed in table 4-2.

4.3 EARTH MODEL

4.3.1 Earth Gravitational Fidd

Zonal harmonic coefficients up to J4 of Earth gravitational
field:

J2 0.001_263

J3 _,_E-5

J4 -0.16IE-5

4.3.2 Earth Topographic Sites

4.3.2.1 Launch Site

The coordinates for the launch site at the Kennedy Space
Center are:

latitude 28.45 °

longitude 279.4 °

4.3.2.2 Deep Space Network Station Sites

Geocentric spherical coordinates of the Deep Space Net-
work station sites are listed below in table 4-3. (_ese are

the calculated values and not verified by ac_ =measure-
ments.)

4.4 MA_ MODEL

4.4.1 Shape

The surface fi_re of Mars is more i_egular than that of the

Earth, where a simple oblate spheroid model provides the
reference surface (an excellent approximation to mean sea
level). For Mars, two different reference surfaces are used

for different purposes.

4.4.1.1 Equatorial Radius

The standard for measuring radial distances from Mars is

the equatorial radius defined by the IAU in 1976 (Seidel-
mann, 1977).

R M= 3397.2 + 1 km

The surface of Mars deviates substantially from a circle at

the equator and _is represents an average value. The

equatorial radius should be used for defining distances
from the center of mass of Mars in "martian radii". Also,

for the near-circular mapping and quaran_ne orbits, the
term "orbit aI_tude" will be defined as the difference

between the mean se_-major axis, _" of the orbit and the

_uatonal radius of Mars.

Orbit A!_de = -_ - RM

r .... :-- 'i ............. i¸
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Symbol
k

c

t
AU

W(sun)
GMS

Value

0.01720209895
299792.458 + 0.0012
499._7837 + 0.000002

149,597,870._ + 2
1_8.
•13271243993_068D12

Units

km/s
set2

km
w/m**2
km**3/sec**2

GM(1)_
GM(2)
GM(3)
GM(4)
GM(5)
GM(6)

GM(7)
GM(8)
GM(9)
GMM
GMB

.220320_727213072D5

.32485876_1_71651

.39_8073446286_

.42828.__87688960D5 _
•1267125970817__
 5 970 29963 8

.49027_1405947202_4

.40350324 7214041__

_r GM is for planetary system including its _tellites.

Cornments

Gau_ian constant

Velocity of light
1-AU light time
AU c*t
Solar flux at I AU

GMS=AU**3*k**2 / (86400)**2
GM of Sun

Mer_ry
Venus
Ear_

Mars

Jupiter
Sa_rn
Uranus

Neptune
Pluto
Moon

......

Earth-Moon system

RPL(3) 6378'14 + 0._5 km
RPL(4) 3397,2+ 1 km

f_ .00335281 + 0.00000002
fM 0051865

RS(3) 2.5D6 km
RS(4) 2.0D6 km

Equatorial radius of Earth
Equatori_ radius of Mars

Earth flattening
Mars flattening

Sphere of influence for Earth
Sphere of influence for Mars

Planet pole orientations: Declination and right ascension in EME50 system.
d E - 89.9999988317- 0.556_00297"T + 0:..0001185607"T*'2 (deg) <--Earth
a_. - -0.0(0K)013435 ....0o6402780091"T - 0.0(0KI839481*T**2 _---Earth
d M - 52.711 - 0 061"T <---Mars
aM = 317.342 - 0.108"T (deg) <--Mars
where T = (JED- 2433282.5)/36525.

Prime meridians: Hour angles of the mean equinoxes
VE = 100.0755426042 + 360.98564734584"(d- DU'P*/86400) (deg)
VM= 148.595 + 350. 89198566343"d (deg)
where d = (JED- 2433282,5) = days from Jan. 1.0, 1950.
_'5"DUT = ET - UT (see section 4.2.2); tentatively use the value for DET.

÷--Earth

_Mars

Rot(4) 350.891985 + . 0(0X)07 deg/day Mars rotation rate

TABLE 4-1.-Table of general constants

4.4.1.2 Reference Mapping Surface equatorial and polar radii of the spheroid are defined as

The reference mapping surface for Mars has been defined r = 3393,4 krn _equatoriaI radius

by the U.S. Geological Survey (USGS) in preparing the rp = 3375.7: km _polar radius

existing maps of Mars. It should be used to locate surface This reference surface, also called the USGS mapping
features on Mars and to define the nadir direction. The spheroid, is referenced to a particular pressure level in the

nadir direction is the fundamental pointing reference for atmosphere (6.1 mbar), and it has a smaller equatorial
science observations. The reference surface is an oblate radius than the average of the solid surface.

spheroid centered at the center of mass of the planet. The
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Earth:
a=

e=

i=
fi=
o=
M=

Mars:

a =

e--

i=

M___.

Where:

149597927. (km)
0.0167301085

174.40956
287.67097
358.000682

- 0.000041926"T- 0.000000126"T*'2

0.013076"T - 0.00009"T*'2(deg)

- 0.24166"T + 0.00006*T**2(deg)
+ 0.56494"T + 0.00009"T*'2(deg)
+ 0.9856002628"d- 0.000155"T*'2

+ 0.0000033333"T*'3 (deg)

22794104O.(kin)
0,09335891275 + 0.000091987"T - 0.00_00077"T*'2

1.850-0.00821"T - 0.00002*T**2(deg)
49.17193-0.2947"T- 0.00065"T*'2 (deg)
285.96668 + 0.73907"T + 0'00047_'2 (deg)

169.45872 + 0.5240207716"d + 0.0001825972"T*'2

+ 0.0000011944"T*'3 (deg)

d=ephemeris days from reference date Gan. 1.0 1950.
ET = JED 243.3282.5)

which differs from the B1950epoch.
T= d/365_.

TABLE4-2.- Analytic ephemefides of Earth and Mars

4.4°2 Orientations
4.4.2.3.1 IAU specification of prime meridian.- The IAU

4.4.2.1 Mean Orbit Pole defines prime meridian by specifying the angle W that is
measured _ong the marian _uator eastward from the

Computation of the mean orbit pole of Mars as a function ascending node of the _r_an equator on the EME50
of time is based on the analysisofS_rms,1971. _e mean equatorial pl_e to _e _int where _e prime meridian
orbital inclination(i) and node(fl), as descried in section

4.2.4.2, provides the vector of the orbit pole.

4.4.2.2 Mean Rotation Pole

The IAU has defined the declination and right ascension of
the pole as a linear function of time in the EME50 coordi-
nate system (Davies et al., 1983) as follows:

c_ = 317,342 - 0.108"T (deg)
_M = 52.711 - 0.061"T

where: T = (JED- 2433282.5)/36525 (Julian cen-

tury from Jan. 1,1950)

4.4.2.3 Prime Meridian

cro_s the planet's _uator (_ fig. 4-1). The value for W
deriv_ by Sw_tser, 1988, from Da_es et al., 1986, is:

W = 11.578 + 350.891983"d

where: d is the number of days measured from the stan-
dard e_h.

4.4.2.3.2 Hour angle of equinox s_cification of prime
meridian.- _eJPL __ion so,ware uses the hour angle of
martian _uinox, VM, (see fig. 4-2) to s_cify the prime
meridian. The IAU definition for the prime meridian may
be converted to the JPL format (Blume, 1986a). The result

is the following expression for the hour angle of equinox

VM (also given in table 4-1). The value for VMderiv_ by
Sweetser, 1988, from Davies et al., 1986, is:

Station

DSS15

PSi5
DSS65

C_rdinates

Radius Latitude Longi_de
km degr_s degrees

6371.916 35.2403 243.1120

6371.68 -35.2170 148.9788

TBD

TABLE 4-3.-Coordinates of deep space network sites

V M 148.5948 + 350.89198566343"d (deg)

where: d-(JED-2433282.5)

4.4.2.4 Rotation Rate

The ro_tion rate of Mars as measured with res_ct to the

martian vernal equinox is (Michael, 1979):

ROT = 350:891985 + 0._7 deg/day
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4.4.3 Gravitational Held

4.4.3.1 Gravitational Harmonics

The current Knowledge of the gravity field is obtained

mainly from the analysis of the Mariner 9 and Vi_ng I and

2 radio tracing data. A varieW of global _avity field

models of order 6,12, and 18 are published in _e literature
(Bal_no et aI., 1982; C_stensen and B_mino, 1979;

Christensen and Williams, 1978). 4

4..4.3.2 Gravity Anomalies

Gravity anomalies (M_CONS)are kno_ to exist on

Mars and are consider_ to _ important sources of pertur-

ba_on for low al_tude orbits. _e current _owledge is

su_nzed in ruble 4-4 (Sjo_en, 1985). Note the large

unce_ainties as_iated wi__e anomalies in the _gh

latitude regions. _sis due to the fact that _e previous

orbiters were o_y able to pro_ those regions from high
altitude orbits. At JPL, the disk model (C_stensen and

Williams, 1978) is used to account for the dynamic effects
of the MASCONS.

NASA TM 100470

North Pole

: Planet equator

Earth equator of 1950

IAU reference v_tor N803196m

Figure 4-1.- IAU s_ification of prime meridian.

4.4.4 Martian Time Systems North Pole

4.4.4.1 Martian Seasonal Time

The seasons of Mars are measured by the longitude of the

Sun, L, with respect to the vernal equinox of the planet.

The L is the planetocentric longitude of the Sun measured

eastward in the orbital plane of Mars. The vernal equinox

is defined by the instantaneous orbital and equatorial
planes. This definition follows the one used in The Astro-

nornical Almanac, 1986. The L differs slightly from the

areocentric right ascension of the Sun. Figure 4-3 shows

the definition of L.

Prime
Meridian

,Planet orbit

Planet equator

Table 4-5 shows the beginning dates of the martian seasons

for the time period 199.5 through 2005.

4.4.4.2 Martian Solar Time

Two types of martian solar time, local true solar time and

local mean solar time can be used to express the time of day

at a point on the surface of Mars. Local true solar time

(LTST) is measured relative to the true position of the Sun.

The LTST of a point on the surface of Mars is defined by the

difference in areocentric right ascension between that point

and the true Sun, as shown in fi_re 4-4. The right
ascension difference, measured eastward, is measured in

degrees and converted to true solar hours, minutes, and

seconds past local noon. The units of this equivalent clock

time are not constant, but are defined by analogy with the

Earth on the basis of 24 "true-solar-hours" per true solar

Vernal equinox N8031.87m

Figure 4-2.- Hour angle of equinox for specifying prime meridian.

day. The true solar day for Mars varies in length by about

50sec between perihelion and aphelion.

Local mean solar time (LMST)is defined similarly, as

shown in figure 4-5, by the areocentric right ascension

difference between a point on the surface and the fictitious

mean Sun (FMS). The FMS is a mathematically defined

concept, a point that moves on the celestial equator of

Mars, which represents the average motion of the Sun over

4The Mars Observer navigation team has adopted the Balmino 18x18 field (Balmino et al., 1982)as nominal.
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Areocentric

Identification Longitude Latitude Radius GM 3oGM
(deg) (deg) (km) (km3/sec a) %

Hessas Planitia 69.7 -42. 900. -0.4

Isidis Planitia 89.0 12. 240. 0.1

Utopia Plamtia 95.0 42. 700. 0.25

Elysium Mons 146.5 25. 300. 0.15

Olympus Mons 226.5 18. 300. 0.6
Arsia Mons 239.5 -9. 180. 0.15

Pavonis Mons 247.5 0. 180. 0.15

Alba Patera 251.0 40.5 450. 0.2

Ascraeus Mons 256.0 11. 200. 0.15

Ar_ Planitia 317.0 -51. 400. -0.1

3O

NASA TM 100470

Hesperida 98..0 -15. 900. 0.1

Elysium (West) 110.0 18. 600. -0.1
Arcadia 209.0 49. 600. 0.05

Alba Patem (East) 2176.0 39. _0. 0.1
Valles Marineris 289.0 -4. 540. -0.03

Acid_ta (West) 310.0 45. 720. -0.07
Valles Marineris 332.0 -2. 600. -0,04

70 ¸

North Polar Cap 0.0

South Polar Cap 180.0

87.5 540. 0.14

J-85.0 600. 0.14

TABLE 4-4.- Mars gravity anomalies and error assessment

the martian year. A similar concept is used to define

universal time for the Earth. The right ascension of the

FMS is defined by the following equation (Beerer, I985;
Blume, 1986b): o_ _

R. A. of FMS = -28.217 ° + 0.524041* aTp (deg) pole

where: AT = JED- 2449200,5
P

= JED- August 1, 1993 00:00 ET

The equation of time (EOT)for Mars is the difference in

right ascension between the mean Sun and the _e Sun.

EOT = (R. A. of FMS) - (R. A. of _e Sun) Planet equator

The value of EOT in degrees is usually converted to solar-

minutes to give the correction to mean solar time to obtain
true solar time. True solar time varies 40 solar min _ead

to 51 solar min behind mean solar time. That is, the true

Sun varies from 10.0 deg west to 12.8 deg east of the FMS.

L$

100

Meridian

containing
the sun

Planet orbit

The len_h of a mean _lar day (sol) for Mars can be
computed from the rotation rate for Mars with reset to its

vernal equinox (Michael, 1979) and the rate of motion of
FMS. The value obtained is:

I sol = 88:775.245 + .002 sec

4.5 MARTI_ SA_LLI_S

4.5.1 Phobos and Deimos Physical Data

The two satellites of Mars, Phobos and Deimos, were

discovered by Asaph Hall during the 1877 op_sition.

4-6

Vernal equinox

Ls= Longitude of the Sun
(measured along the planet orbit)

Figure 4-3.- Longitude of Sun (L).

To Sun

NSO3188m

_th satdlites _e in near-equatorial orbits that are very

nearly drcular. _e orbital radius of _imos is 6.91 RM

with a sidereal period of 30.30 hr. The Phobo s orbital

radius is 2.76 RMwith a sidereal period of 7.65 _. Phons

orbits inside the s_chronous orbit radius (6.02 RM), and it
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Season Epoch at beginning of season

Northern Sp_g
Northern Summer

Northern Autumn

Northern Winter

Ls value

Northern Spring
Northern Summer

Northern Aut_n

Northern Winter

October 9,1994 2016 ET 0

April 26,1995 I042 ET 90
October 26, 1995 2157 ET 180

March 21,1996 1337 ET 270

Northern Sp_g
Northern Summer

Noahern Autumn
Northern Winter

August 26, 1996 19_ ET 0
March 13, 1997 09_ ET 90

September 12,1997 2121 ET 180
February 6,1998 1303 ET 270

Northern Spring
Northern Summer
No,bern Autumn

Northern Winter

July 14,1998 1853 ET 0

January 29,1999 0911 ET 90

July 31,1999 2044 ET 180

December _, 1999 1_ ET 270

Northern Spring
Northern Summer

.........

Northern Aut_n
Northern Winter

Northern Spring
Northern Summer

Northern Autumn

No_hern Winter

May 31, 2000 1811 ET 0
December 16, 2000 0824 ET 90

June 17, 2001 2007 ET 180

November 11, 2001 1154 ET 270

April 18, 2002 1729 ET 0
November 3, 2002 0739 ET 90

May 5, 2003 1930 ET 180

_ember 2K 2003 1647 ET 270

March 5, 2004 1647 ET 0

_ember 20, 2004 0653 ET 90
March 22, 2005 1853 ET 180

AuguSt 16, 2005 10_ ET 270
....

TABLE 4-5.- Table of martian seasons

Meridian

containing
the true Sun

Planet o_o_ Planet

equator

To Sun

LTST -- (ep - 8,)*24/360 + 12 hr

Vernal equinox N803"189m

Figure 4-4.- Local true solar time.

is _lieved that the orbit is d_aying due to tidal action
(_rn and Duxbury, 1974).

Physical data (Williams et al., 1981; Born, 1974)for the two

satellites are shown in table 4-6. The irregular shape of

each satellite is approxi_ted by a tri-axial ellipsoid. The

rotation of both satellites is synchronous _th the long a,_dsMeridian ....
containing point_ toward Mars and the short axis (maximum moment
the point of inertia) normal to the orbit plane.
on Mars

4.5.2 Satellite Ephemerides

Orbital elements of the satellites (from Born, 1974) are

reproduced in table 4-7.

4.6 COORDINATE SYSTEMS

4.6.1 Introduction

Various coordinate systems are u_ to present engineer-

ing _d science data during the many phases of a mission.

T_s of coordinate systems considered are generally
cartesian or spherical, but sometimes they are used with

4-7



Environment of Mars, 1988

Phobos Deimos

Shape (kin) 13.5 x 10.8 x 9.4 7.5 x 6.1 x 5.5

GM (km**3/s**2) (.84 + .07"E)-3 (.12 + .01"E)-3

Rotation Rate (deg/day) 1128.592 285.253

TABLE 4-6.- Physical data of Phons and Deimos

slight variations. A coordinate system is eider ine_ial or

time varying. An inertial system of reference is defined by

two reference directions fix_in time (e,g., orbit and body

poles of a planet of B1950 or ofother e_ch). A non-inertial
frame bases one or both of the reference directions with

time varying fixes (e.g., of date quantities). The conven-

tional method of coordinate system defimtion includes

specifying the origin, the x-y plane, and the reference

directions. This method will _ employed throughout this
section.

4.6.2 Mars-Centered Coordinate Systems

Generally, Mars-centered coordinate systems are defined
relative to the Mars mean a_s of rotation and various

definitions of the x-axis or longitude.

(Since the IAU does not define the mean orbit poles of
planets, the coordinate systems built on the Mars vernal

equinox and pole given in section 4.5.2.1 must rely on

additional independent mean orbit pole specifications,
such as made by Sturrns, 1971.)

4.6.2.1 Mars Equator and Equinox of E_h

This coordinate system is an inertial reference and is

defined by the orientations of the Mars mean body pole
and mean orbit _leat a given e_ch. _is is a primary

coordinate system used to represent trajectories. The

equatorial plane is the x-y plane of this coordinate system.

NASA TM 100470

True
Fictitious Sun
mean Sun

Ae

_._.Vemai
equinox

Example: a O- Op-eFMS--30

= 2.00 pm LMST N803190m

Figure 4-5.- Local mean solar time definition.

The z-axis is in the body pole direction and the x-axis is in

the direction of the vernal equinox (ascending node of

Mars orbit in the Mars _uator). Spherical coordinates for

this system are radius, declination, and right ascension.

4,6.2.2 Mars Equator and Prime Meridian of Date

T_s is the standard _dy-fixed rotating coordinate system

with the z-axis in the pole direction and the x-axis along the
direction of the prime meridian vector (a vector in the

equatorial plane from the center of the planet to the prime

meridian). Spherical coordinates for this system are ra-

dius, areocentric latitude, and areocentric longi_de
(measured eastward).

4-8

Element Phobos Deimos

a (km) 9378.529 + 0.01 23458.906 + 0.03

e .0150 + .0_I .00080 + .0001

i (deg) 1.04 + 0.012 2.79 + 0.02

f2 (deg) 100.509 ± 0.8 10.913 + 0.2

03 (deg) 269.873 + 0.9 235.625 + 7

M° (deg) 311.818 ± 0.36 232.565 ± 7

ko = f2 + co + M° (deg) 322.20 ± 01 118,9 + 0.1
n (deg/day) 1128.4069 285.1438

f_ (deg/day) -0.43744 -0.0181

_o(deg/day) 0.87481 0.03610

+ _ + & (deg/day) 1128.84430 + .0001 285.16178 + 0.0001

Note: Epoch JD = 244! 266 .5_, November 11, 1971. Angles referred to Mars true equator

and vernal equinox of date.

TABLE 4-7.- Orbit of Phobos and Deimos
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North Pole

_ ,r- Meridian
\ "_ containing

/ \ / X point of

,y _interest

IS

/_ _ EaCh equator
/" _ of 1950

X-axis

IAU reference vector N803191m

Figure 4-6.- Mars mean equator and IAU-v_or of epoch
coordinate system.

4.6.2.3 Mars Mean Equator and IAU-Vector of E_ch (or
Date)

_s inertial coordi_te system, sho_ in fi_re 4_, is

defined by _e mean equator of M_s ofe_h (or date) and

the standard E_th _uator of B1950. The x-y plane is the

Mars equatorial plane. The x-axis is defined by the a_end-

ing node of Mars equator of e_ch (or date) onthe

standard Earth equatoriM plane. _s unit vector (see fig.

4-1) is used in the IAU defimtion of the prime meridian and
henceforth wilI_ te__ as IAU-vector in t_sd_ument.

Z-axis is in the direction of the Mars north _le.

4.6.2.4 Areographic Coordinate System

T_s carto_ap_c coordinate system is originally u_ to
define the latitude and longitude of surface features on

Mars. The cartesian reference of this coordinate system is

the same as the body fixed (equator and prime meridian)

system. However, the definition of latitude and longitude
differs from the standard spherical system definition be-

cause this system deals with an oblate planet rather than a

spherical one. It refers to the oblate spheroid reference

surface as given in section 4.4.1. The areographic altitude
instead of the radius from the center of planet is u_ for

coordinate s_cificafion. A pictorial of the systemis shown

in figure 4-7. S_ifically, the following coordinates have
been used:

Areographic altitude = Distance from the planet surface

_int along the local vertical of the planet to the _int of
interest.

Areo_ap_c longitude = Measured in the same way as a
spherical coordinate, but it is measured westward from

the prime meridian direction.

NASA TM 100470

s/c

Reference _ /

ellipsoid Areographic

latitude l ..... Equatorial
- plane

N803192m

Figure 4-7.- Areographic coordinate system.

Areo_ap_c latitude = Angle foxed by the local normal

and the equatorial plane.

4.6.2.5 In-Orbit Radial-Crosstrack-Downtrack System

During the orbiting p_se of a __ion, orbit determina-
tions are made using the Radial-Crosstrack-Downtrack

coordinate system. The system is defined by the instanta-
neous areocentric position and velocity of the spacecraft.

The radial vector from Mars to _e spac_raft is the radial-
axis. The crossCack a_s is ali__ with the spac_raft orbit

pole and the downtrack-axis is chosen to complete the

right-handed orthogonal system. Figure 4-8 displays the

system.
• Radia8

S/C

_C velocity

Crosstrack ]
_ (Normal to orbit plane [

N803193m

Figure 4-8.- In -orb it radial -crosst rack-do wn trac k

coordinate system.

4.6.3 Spac_raft-Center_ Reference System

4.6.3.1 Orbital Pha_s Nadir Coordinate System

This "orbital reference coordinate system" is used to de-
fine ins_ment _inting requirements during the orbiting

phase of a mission. The system is defined with respect to
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the nadir direction and the spacecraft orbital velocity as

shown in Figure 4-9.

The nadir direction (+Z axis) has been defined by the line

passing through the spacecraft perpendicular to the Mars

mapping reference spheroid. The y-axis is chosen normal

to the nadir and velocity vector (cross product of Z vector

and velocity). The x-axis is chosen to complete the orthogo-

nal right handed system. The cone and clock angles are the

polar coordinates of the object observed with the clock

angle measured clockwise in the longitude.

(S/C velocity)

Y<:= ×;)into

S/C orbit

_R Z I_/Ceference " Nadir vector

N803194m

Figure 4-9.- Nadir coordinate system.
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